Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(4): 2219-2225, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393846

RESUMO

At present, the effect characteristics and mechanism of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active organic carbon in dryland yellow soil remain unclear. In order to explore the effect of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active organic carbon in dryland yellow soil, we used soil with no fertilization (CK), only chemical fertilizer (NP), 50% organic fertilizer replacing chemical fertilizer (1/2(NPM)), and 100% organic fertilizer replacing chemical fertilizer (M). We examined the indoor mineralization culture of organic carbon and explored the characteristics of soil organic carbon and the change in active organic carbon under the condition of organic fertilizer replacing chemical fertilizer. The results showed that organic fertilizer replacing chemical fertilizer increased soil pH, organic carbon (SOC), total nitrogen (TN), and C/N. During the culture period, the soil organic carbon mineralization rate of all treatments decreased sharply in the initial stage (2-4 days), decreased slightly in the middle stage (4-20 days), and tended to be stable in the last stage (20-60 days). After fertilization, the cumulative mineralization of soil organic carbon significantly increased by 7.9%-27.7%. Compared with that in the NP treatment, the cumulative mineralization of soil organic carbon decreased by 5.2% in the 1/2(NPM) treatment and increased by 12.2% in the 1/2(NPM) treatment. Before mineralization culture, the substitution of organic fertilizer for chemical fertilizer had no significant effect on soil recalcitrant organic carbon (ROC) but significantly increased the content of microbial biomass carbon (MBC). The content of dissolved organic carbon (DOC) was significantly increased in the 1/2(NPM) treatment and decreased in the M treatment. After 60 days of culture, the content of soil active organic carbon in all treatments decreased compared with the initial content, of which MBC decreased the most (30.6%-41.2%). The accumulated mineralization of organic carbon was significantly positively correlated with soil pH and SOC and significantly positively correlated with the initial value of MBC and the change value before and after culture. To summarize, 100% organic fertilizer replacing chemical fertilizer significantly promoted soil organic carbon mineralization and reduced soil organic carbon stability; 50% organic fertilizer replacing chemical fertilizer inhibited soil organic carbon mineralization, which was beneficial to soil sequestration and fertilization; and 50% organic fertilizer replacing chemical fertilizer significantly increased soil active organic carbon content, and MBC was used as the main carbon source in the process of soil organic carbon mineralization.


Assuntos
Fertilizantes , Solo , Agricultura/métodos , Carbono/química , Carvão Vegetal , Nitrogênio , Solo/química
2.
Ying Yong Sheng Tai Xue Bao ; 32(1): 145-153, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33477222

RESUMO

We carried out a 3-year field experiment with three treatments: 1) no fertilizer application (CK), 2) chemical fertilizer application (F), and 3) combined organic and chemical fertilizer (FM) in which the total nitrogen inputs were equal with F (organic fertilizer applied in the early rice season). We evaluated the variations of crop yield, CH4 and N2O emission, and soil nutrient. The results showed that fertilizer application could increase rice yield in both early and late rice seasons. Compared with F treatment, FM treatment increased rice yield by 5.6% and 7.2% for early and late rice, respectively. The enhancement of yield was positively correlated with years. Compared with F treatment, CH4 emission in early rice season, late rice season and whole year in the field in FM treatment was increased by 8.2%, 4.8% and 6.7%, respectively, while the N2O emission was deceased by 31.4%, 5.0% and 18.8%, respectively. Organic fertilizer application reduced the greenhouse gas intensity (GHGI) by 6.8% and 8.5%, but there was no significant differences in global warming potential (GWP) across treatments in 2018 and 2019. Compared with F treatment, the content of organic matter, total nitrogen, available phosphorus and available potassium were increased by 9.7%, 4.1%, 30.9% and 2.5%, respectively. Overall, our results suggested FM application in early rice season is an effective measure to increase crop yield, improve soil nutrient, and reduce GHGI.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , China , Fertilizantes/análise , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio , Óxido Nitroso/análise , Nutrientes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...