Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Tissue Cell ; 90: 102522, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39173455

RESUMO

Human dental follicle cells (DFCs) as multipotent stem cells are currently investigated within the field of regenerative medicine considering their potential for the regeneration of dental tissues, bone defects caused by periodontal or degenerative diseases and the treatment of craniofacial disorders. However, molecular mechanisms of the differentiation into mineralizing cells are still inadequately understood. Previous studies have shown that GÖ6976, an inhibitor of classical isoforms of protein kinase C (PKC), enhanced ostogenic differentiation of DFCs. A possible mechanism for increased osteogenic differentiation could be the regulation of ossification inhibitors. This study therefore investigated whether the osteogenic differentiation inhibitor sclerostin (SOST) is regulated by GÖ6976 and whether the addition of sclerostin attenuates the stimulating effect of the PKC inhibitor. We demonstrated that the expression of the sclerostin gene decreased after PKC inhibition by GÖ6976 and that its gene expression is likely maintained by PKC via the BMP signaling pathway. Furthermore, supplementation of osteogenic differentiation medium with sclerostin impairs GÖ6976-induced differentiation of DFCs. Our data suggest that regulation of sclerostin mediates PKC inhibition-induced mineralization of DFCs.

2.
Front Pharmacol ; 15: 1426767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175549

RESUMO

Background: Qianggu Concentrate (QGHJ), a traditional Chinese medicine, is extensively used to treat Type 2 Diabetic Osteoporosis (T2DOP). Despite its widespread use, research on its therapeutic mechanisms within T2DOP is notably scarce. Objective: To explore QGHJ's osteoprotection in T2DOP rats and BMSCs, focusing on the antioxidant activation of SIRT1/NRF2/HO-1 and NRF2 nuclear migration. Methods: QGHJ constituent analysis was performed using UPLC-HRMS. Safety, bone-health efficacy, and glucose metabolic effects in T2DOP rats were evaluated via general condition assessments, biomarker profiling, micro-CT, biomechanics, staining methods, and ELISA, supplemented by RT-qPCR and Western blot. BMSCs' responses to QGHJ under oxidative stress, including viability, apoptosis, and osteogenic differentiation, were determined using CCK-8, flow cytometry, ALP/ARS staining, and molecular techniques. The modulation of the SIRT1/NRF2/HO-1 pathway by QGHJ was explored through oxidative stress biomarkers, immunofluorescence, and Western blot assays. Results: UPLC-HRMS identified flavonoids, monoterpenes, and isoflavones as QGHJ's key compounds. In vivo, QGHJ proved safe and effective for T2DOP rats, enhancing bone mineral density, microenvironment, and biomechanical properties without impairing vital organs. It modulated bone markers PINP, TRACP 5b, RUNX2 and PPARγ, favoring bone anabolism and reduced catabolism, thus optimizing bone integrity. QGHJ also regulated glycemia and mitigated insulin resistance. In vitro, it preserved BMSCs' viability amidst oxidative stress, curbed apoptosis, and fostered osteogenesis with regulated RUNX2/PPARγ expression. Mechanistic insights revealed QGHJ activated the SIRT1/NRF2/HO-1 pathway, augmented NRF2 nuclear translocation, and enhanced the antioxidative response, promoting bone health under stress. Conclusion: In T2DOP rat and BMSCs oxidative stress models, QGHJ's bone protection is anchored in its antioxidative mechanisms via the SIRT1/NRF2/HO-1 pathway activation and NRF2 nuclear translocation.

3.
Acta Biomater ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117114

RESUMO

The global diffusion of antibiotic resistance poses a severe threat to public health. Addressing antibiotic-resistant infections requires innovative approaches, such as antibacterial nanostructured surfaces (ANSs). These surfaces, featuring ordered arrays of nanostructures, exhibit the ability to kill bacteria upon contact. However, most currently developed ANSs utilize bioinert materials, lacking bioactivity crucial for promoting tissue regeneration, particularly in the context of bone infections. This study introduces ANSs composed of bioactive calcium phosphate nanocrystals. Two distinct ANSs were created through a biomineralization-inspired growth of amorphous calcium phosphate (ACP) precursors. The ANSs demonstrated efficient antibacterial properties against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) antibiotic resistant bacteria, with up to 75 % mortality in adhered bacteria after only 4 h of contact. Notably, the ANS featuring thinner and less oriented nano-needles exhibited superior efficacy attributed to simultaneous membrane rupturing and oxidative stress induction. Moreover, the ANSs facilitate the proliferation of mammalian cells, enhancing adhesion, spreading, and reducing oxidative stress. The ANSs displayed also significant bioactivity towards human mesenchymal stem cells, promoting colonization and inducing osteogenic differentiation. Specifically, the ANS with thicker and more ordered nano-needles demonstrated heightened effects. In conclusion, ANSs introduced in this work have the potential to serve as foundation for developing bone graft materials capable of eradicate site infections while concurrently stimulating bone regeneration. STATEMENT OF SIGNIFICANCE: Nanostructured surfaces with antibacterial properties through a mechano-bactericidal mechanism have shown significant potential in fighting antibiotic resistance. However, these surfaces have not been fabricated with bioactive materials necessary for developing devices that are both antibacterial and able to stimulate tissue regeneration. This study demonstrates the feasibility of creating nanostructured surfaces of ordered calcium phosphate nano-needles through a biomineralization-inspired growth. These surfaces exhibit dual functionality, serving as effective bactericidal agents against Gram-negative and Gram-positive antibiotic-resistant bacteria while also promoting the proliferation of mammalian cells and inducing osteogenic differentiation of human mesenchymal stem cells. Consequently, this approach holds promise in the context of bone infections, introducing innovative nanostructured surfaces that could be utilized in the development of antimicrobial and osteogenic grafts.

4.
ACS Biomater Sci Eng ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163588

RESUMO

The repair and regeneration of maxillofacial bone defects are major clinical challenges. Titanium (Ti)-magnesium (Mg) composites are a new generation of revolutionary internal fixation materials encompassing the mechanical strength and bioactive advantages of Ti and Mg alloys, respectively. This study was aimed to construct a Ti-Mg composite internal plate/screw fixation system to fix and repair bone defects. Further, the effects of different internal fixation systems on bone repair were analyzed through radiological and histological analyses. Notably, Ti6Al4V with rolled Mg foil was used as the experimental group, and a bone defect model of transverse complete amputation of the ulna in rabbits similar to the clinical condition was established. The internal fixation system with the highest osteogenic efficiency was selected based on in vivo results, and the direct and indirect bone repair abilities of the selected materials were evaluated in vitro. Notably, the thin Mg foil-Ti6Al4V internal fixation system exhibited the best fixation effect in the bone defect model and promoted the formation of new bone and early healing of bone defect areas. In vitro, the thin Mg foil-Ti6Al4V composite enhanced the activity of MC3T3-E1 cells; promoted the proliferation, adhesion, extension, and osteogenic differentiation of MC3T3-E1 cells; and regulated new bone formation. Further, it also promoted the polarization of RAW264.7 cells to M2 macrophages, induced the osteogenic immune microenvironment, and indirectly regulated the bone repair process. Therefore, a internal fixation system holds a promising potential for the internal fixation of maxillofacial bone defects. Our findings provide a theoretical and scientific basis for the design and clinical application of Ti-Mg internal fixation systems.

6.
Cell Mol Life Sci ; 81(1): 338, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120703

RESUMO

Alveolar bone loss is a main manifestation of periodontitis. Human periodontal ligament stem cells (PDLSCs) are considered as optimal seed cells for alveolar bone regeneration due to its mesenchymal stem cell like properties. Osteogenic potential is the premise for PDLSCs to repair alveolar bone loss. However, the mechanism regulating osteogenic differentiation of PDLSCs remain elusive. In this study, we identified Neuron-derived orphan receptor 1 (NOR1), was particularly expressed in PDL tissue in vivo and gradually increased during osteogenic differentiation of PDLSCs in vitro. Knockdown of NOR1 in hPDLSCs inhibited their osteogenic potential while NOR1 overexpression reversed this effect. In order to elucidate the downstream regulatory network of NOR1, RNA-sequencing was used. We found that downregulated genes were mainly enriched in TGF-ß, Hippo, Wnt signaling pathway. Further, by western blot analysis, we verified that the expression level of phosphorylated-SMAD2/3 and phosphorylated-SMAD4 were all decreased after NOR1 knockdown. Additionally, ChIP-qPCR and dual luciferase reporter assay indicated that NOR1 could bind to the promoter of TGFBR1 and regulate its activity. Moreover, overexpression of TGFBR1 in PDLSCs could rescue the damaged osteogenic potential after NOR1 knockdown. Taken together, our results demonstrated that NOR1 could activate TGF-ß/SMAD signaling pathway and positively regulates the commitment of osteoblast lineages of PDLSCs by targeting TGFBR1 directly.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Ligamento Periodontal , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Diferenciação Celular/genética , Células Cultivadas , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator de Crescimento Transformador beta/metabolismo
7.
Bone ; 188: 117224, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117162

RESUMO

Postmenopausal osteoporosis (PMOP) is a metabolic disorder characterized by the loss of bone density, which increases the risk of developing complications such as fractures. A pivotal factor contributing to the onset of PMOP is the diminished osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs). MicroRNAs (miRNAs) play a substantial role in this process; however, their specific impact on regulating BMSCs osteogenesis remains unclear. Studies have evidenced a reduced expression of miR-18a-5p in PMOP, and concomitantly, our observations indicate an augmented expression of miR-18a-5p during the osteogenic differentiation of BMSCs. This investigation seeks to elucidate the regulatory influence of miR-18a-5p on BMSC osteogenic differentiation and the underlying mechanisms. In vitro experiments demonstrated that the overexpression of miR-18a-5p facilitated the osteogenic differentiation of BMSCs, while the downregulation of miR-18a-5p yielded converse outcomes. Mechanistically, We employed bioinformatics techniques to screen out the target gene Notch2 of miR-18a-5p. Subsequently, dual-luciferase reporter gene assays and rescue experiments substantiated that miR-18a-5p promotes BMSC osteogenic differentiation by suppressing Notch2. Finally, miR-18a-5p was overexpressed via adenovirus injection into the femoral bone marrow cavity, with results demonstrating its capability to enhance osteogenic differentiation and alleviate PMOP symptoms. Our findings disclose that miR-18a-5p fosters osteogenic differentiation of BMSC by inhibiting Notch2, thereby offering novel targets and strategies for PMOP treatment.

8.
J Orthop Surg Res ; 19(1): 466, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118176

RESUMO

OBJECTIVE: Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS: The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS: TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION: This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.


Assuntos
Proteína Morfogenética Óssea 2 , Consolidação da Fratura , MicroRNAs , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Humanos , MicroRNAs/genética , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , Camundongos , Animais , RNA Longo não Codificante/genética , Feminino , Masculino , Fraturas da Tíbia/genética , Osteogênese/genética , Osteogênese/fisiologia , Canais de Cátion TRPM/genética , Proliferação de Células/genética , Diferenciação Celular/genética , Adulto , Apoptose/genética , Pessoa de Meia-Idade , Osteoblastos/metabolismo
9.
Heliyon ; 10(14): e34203, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39104492

RESUMO

Objective: The present study aimed to explore the function of human bone marrow mesenchymal stem cells (hBMMSCs)-derived exosomal long noncoding RNA histocompatibility leukocyte antigen complex P5 (HCP5) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) to improve chronic periodontitis (CP). Methods: Exosomes were extracted from hBMMSCs. Alizarin red S staining was used to detect mineralised nodules. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure HCP5 and miR-24-3p expression. The mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin, osterix, runt-related transcription factor 2, bone morphogenetic protein 2, osteopontin, fibronectin, collagen 1, heme oxygenase 1 (HO1), P38, and ETS transcription factor ELK1 (ELK1) were detected using RT-qPCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) kits were used to determine the HO1 and carbon monoxide concentrations. Heme, biliverdin, and Fe2+ levels were determined using detection kits. Micro-computed tomography, hematoxylin and eosin staining, ALP staining, tartrate-resistant acid phosphatase staining, ELISA, and RT-qPCR were conducted to evaluate the effect of HCP5 on CP mice. Dual luciferase, RNA immunoprecipitation, and RNA pulldown experiments were performed to identify the interactions among HCP5, miR-24-3p, and HO1. Results: The osteogenic ability of hPDLSCs significantly increased when co-cultured with hBMMSCs or hBMMSCs exosomes. Overexpression of HCP5 and HO1 in hBMMSCs exosomes promoted the osteogenic differentiation of hPDLSCs, and knockdown of HCP5 repressed the osteogenic differentiation of hPDLSCs. HCP5 knockdown enhanced the inflammatory response and repressed osteogenesis in CP mice. MiR-24-3p overexpression diminished the stimulatory effect of HCP5 on the osteogenic ability of hPDLSCs. Mechanistically, HCP5 acted as a sponge for miR-24-3p and regulated HO1 expression, and HO1 activated the P38/ELK1 pathway. Conclusion: HBMMSCs-derived exosomal HCP5 promotes the osteogenic differentiation of hPDLSCs and alleviates CP by regulating the miR-24-3p/HO1/P38/ELK1 signalling pathway.

10.
Dent Mater J ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39135261

RESUMO

Material surface micromorphology can modulate cellular behavior and promote osteogenic differentiation through cytoskeletal rearrangement. Bone reconstruction requires precise regulation of gene expression in cells, a process governed by epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling. We constructed osteon-mimetic concentric microgrooved titanium surfaces with different groove sizes and cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the material surfaces to study how they regulate cell biological behavior and osteogenic differentiation through epigenetics. We found that the cells arranged in concentric circles along the concentric structure in the experimental group, and the concentric microgrooved surface did not inhibit cell proliferation. The results of a series of osteogenic differentiation experiments showed that the concentric microgrooves facilitated calcium deposition and promoted osteogenic differentiation of the BMSCs. Concentric microgrooved titanium surfaces that were 30 µm wide and 10 µm deep promoted osteogenic differentiation of BMSC by increasing WDR5 expression via H3K4 trimethylation upregulation.

11.
Cell Biochem Biophys ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136840

RESUMO

Osteoporosis (OP) is an epidemic bone remodeling disorder of growing relevance with the aging population. Considering that isorhamnetin (ISO), a flavonoid derived from plant, has been newly reckoned as an active ingredient in treating OP, our paper was conducted to investigate the regulatory role and mechanism of ISO in OP. CCK-8 method detected cell activity. Alkaline phosphatase (ALP) assay kit, ALP staining and alizarin red S staining measured osteogenic differentiation. RT-qPCR and Western blot examined the expressions of osteoblast-related proteins. Wound healing and cell adhesion assays severally detected cell migration and adhesion. Also, Western blot tested the expressions of extracellular signal-regulated kinase (ERK) signaling-associated proteins. As illustrated, after MC3T3-E1 pre-osteoblasts were stimulated to differentiate to osteoblasts, ISO markedly promoted the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts in a concentration-dependent manner. In addition, administration of ISO functioned as an activator of ERK-dependent BMP2-Smad signaling in MC3T3-E1 osteoblasts and pretreatment with ERK inhibitor PD98059 partially compensated the impacts of ISO on MC3T3-E1 osteoblasts differentiation, mineralization, migration as well as adhesion. To be summarized, ISO might activate ERK-dependent BMP2-Smad signaling to facilitate the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts, suggesting the protective potential of ISO in OP.

12.
Front Bioeng Biotechnol ; 12: 1355950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139296

RESUMO

The most recent progress in reconstructive therapy for the management of periodontitis and peri-implantitis bone defects has relied on the development of highly porous biodegradable bioaerogels for guided bone regeneration. The objective of this work was to evaluate in vitro the osteoinduction of periodontal-originating cells (human dental follicle mesenchymal cells, DFMSCs) promoted by a nano-hydroxyapatite/chitosan (nHAp/CS) bioaerogel, which was purified and sterilized by a sustainable technique (supercritical CO2). Moreover, the in vivo bone regeneration capacity of the nHAp/CS bioaerogel was preliminarily assessed as a proof-of-concept on a rat calvaria bone defect model. The quantification of DNA content of DFMSCs seeded upon nHAp/CS and CS scaffolds (control material) showed a significant increase from the 14th to the 21st day of culture. These results were corroborated through confocal laser scanning microscopy analysis (CLSM). Furthermore, the alkaline phosphatase (ALP) activity increased significantly on the 21st day, similarly for both materials. Moreover, the presence of nHAp promoted a significantly higher expression of osteogenic genes after 21 days when compared to CS scaffolds and control. CLSM images of 21 days of culture also showed an increased deposition of OPN over the nHAp/CS surface. The in vivo bone formation was assessed by microCT and histological analysis. The in vivo evaluation showed a significant increase in bone volume in the nHAp/CS test group when compared to CS and the empty control, as well as higher new bone formation and calcium deposition within the nHAp/CS structure. Overall, the present study showed that the nHAp/CS bioaerogel could offer a potential solution for periodontal and peri-implant bone regeneration treatments since the in vitro results demonstrated that it provided favorable conditions for DFMSC proliferation and osteogenic differentiation, while the in vivo outcomes confirmed that it promoted higher bone ingrowth.

13.
Biomed Pharmacother ; 178: 117241, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111082

RESUMO

Calcific aortic valve disease (CAVD) primarily involves osteogenic differentiation in human aortic valve interstitial cells (hVICs). Schisandrol B (SolB), a natural bioactive constituent, has known therapeutic effects on inflammatory and fibrotic disorders. However, its impact on valve calcification has not been reported. We investigated the effect of SolB on osteogenic differentiation of hVICs. Transcriptome sequencing was used to analyze potential molecular pathways affected by SolB treatment. The study also included an in vivo murine model using aortic valve wire injury surgery to observe SolB's effect on valve calcification. SolB inhibited the osteogenic differentiation of hVICs, reversing the increase in calcified nodule formation and osteogenic proteins. In the murine model, SolB significantly decreased the peak velocity of the aortic valve post-injury and reduced valve fibrosis and calcification. Transcriptome sequencing identified the p53 signaling pathway as a key molecular target of SolB, demonstrating its role as a molecular glue in the mouse double minute 2 (MDM2)-p53 interaction, thereby promoting p53 ubiquitination and degradation, which further inhibited p53-related inflammatory and senescence response. These results highlighted therapeutic potential of SolB for CAVD via inhibiting p53 signaling pathway and revealed a new molecular mechanism of SolB which provided a new insight of theraputic mechanism for CAVD.

14.
Biofabrication ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121892

RESUMO

The viscosity of gelatin methacryloyl (GelMA)-based bioinks generates shear stresses throughout the printing process that can affect cell integrity, reduce cell viability, cause morphological changes, and alter cell functionality. This study systematically investigated the impact of the viscosity of GelMA-gelatin bioinks on osteoblast-like cells in 2D and 3D culture conditions. Three bioinks with low, medium, and high viscosity prepared by supplementing a 5% GelMA solution with different concentrations of gelatin were evaluated. Cell responses were studied in a 2D environment after printing and incubation in non-cross-linked bioinks that caused the gelatin and GelMA to dissolve and release cells for attachment to tissue culture plates. The increased viscosity of the bioinks significantly affected cell area and aspect ratio. Cells printed using the bioink with medium viscosity exhibited greater metabolic activity and proliferation rate than those printed using the high viscosity bioink and even the unprinted control cells. Additionally, cells printed using the bioink with high viscosity demonstrated notably elevated expression levels of alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2) genes. In the 3D condition, the printed cell-laden hydrogels were photo-cross-linked prior to incubation. The medium viscosity bioink supported greater cell proliferation compared to the high viscosity bioink. However, there were no significant differences in the expression of osteogenic markers between the medium and high viscosity bioinks. Therefore, the choice between medium and high viscosity bioinks should be based on the desired outcomes and objectives of the bone tissue engineering application. Furthermore, the bioprinting procedure with the medium viscosity bioink was used as an automated technique for efficiently seeding cells onto 3D printed porous titanium scaffolds for bone tissue engineering purposes.

15.
J Bone Miner Res ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126376

RESUMO

The skeleton is a metabolically active organ undergoing continuous remodeling initiated by bone marrow stem cells (BMSCs). Recent research has demonstrated that BMSCs adapt the metabolic pathways to drive the osteogenic differentiation and bone formation, but the mechanism involved remains largely elusive. Here, using a comprehensive targeted metabolome and transcriptome profiling, we revealed that one-carbon metabolism was promoted following osteogenic induction of BMSCs. Methotrexate (MTX), an inhibitor of one-carbon metabolism that blocks S-adenosylmethionine (SAM) generation, led to decreased N6-methyladenosine (m6A) methylation level and inhibited osteogenic capacity. Increasing intracellular SAM generation through betaine addition rescued the suppressed m6A content and osteogenesis in MTX-treated cells. Using S-adenosylhomocysteine (SAH) to inhibit the m6A level, the osteogenic activity of BMSCs was consequently impeded. We also demonstrated that the pro-osteogenic effect of m6A methylation mediated by one-carbon metabolism could be attributed to HIF-1α and glycolysis pathway. This was supported by the findings that dimethyloxalyl glycine (DMOG) rescued the osteogenic potential in MTX-treated and SAH-treated cells by upregulating HIF-1α and key glycolytic enzymes expression. Importantly, betaine supplementation attenuated MTX-induced m6A methylation decrease and bone loss via promoting the abundance of SAM in rat. Collectively, these results revealed that one-carbon metabolite SAM was a potential promoter in BMSC osteogenesis via the augmentation of m6A methylation, and the cross talk between metabolic reprogramming, epigenetic modification, and transcriptional regulation of BMSCs might provide strategies for bone regeneration.


The bone is a self-renewing tissue that continues to reshape throughout life. Bone marrow mesenchymal stem cells (BMSCs) are essential for bone homeostasis as they are capable of osteogenic differentiation. Recent evidence suggests that BMSCs drive the osteogenic differentiation through metabolic reprogramming, but the mechanism remains unclear. In this paper, we explored the metabolic alteration following osteogenic induction of BMSCs and found that one-carbon metabolism was obviously promoted in this process. The underlining mechanisms of the osteogenic potential driven by one-carbon metabolism seem to be its contribution on N6-methyladenosine (m6A) methylation and consequent glycolysis level by providing methyl donor. We demonstrated that one-carbon metabolism-mediated m6A methylation was a potential promoter in BMSC osteogenesis, and metabolic-epigenetic coupling might provide novel therapeutic targets for bone regeneration.

16.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113140

RESUMO

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Assuntos
Diferenciação Celular , Peróxido de Hidrogênio , Osteogênese , Estresse Oxidativo , Ligamento Periodontal , Células-Tronco , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Ligamento Periodontal/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , beta Catenina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo
17.
Biomed Pharmacother ; 178: 117231, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094542

RESUMO

AIMS: To investigate the molecular mechanism of osteoclast-derived exosomes in osteoporosis. MAIN METHODS: RANKL induced osteoclast model was screened for significantly differentially expressed lncRNAs and mRNAs by whole RNA sequencing. Exosomes were characterized using electron microscopy, western blotting and nanosight. Overexpression or knockdown of AW011738 was performed to explore its function. The degree of osteoporosis in an osteoporosis model was assessed by mirco-CT. The osteoclast model, osteoblast differentiation ability and the molecular mechanism of lncRNA AW011738/miR-24-2-5p/TREM1 axis in osteoporosis were assessed by dual luciferase reporter gene assay, Western blotting (WB), immunofluorescence and ALP staining. Bioinformatics was used to predict interactions of key osteoporosis-related genes with miRNAs, transcription factors, and potential drugs after upregulation of AW011738. To predict the protein-protein interaction (PPI) network associated with key genes, GO and KEGG analyses were performed on the key genes. The ssGSVA was used to predict changes in the immune microenvironment. KEY FINDINGS: Osteoclast-derived exosomes containing lncRNA AW011738 decreased the osteogenesis-related markers and accelerated bone loss in OVX mice. Osteoclast (si-AW011738)-derived exosomes showed a significant increase in biomarkers of osteoblast differentiation in vitro compared to the si-NC group. As analyzed by mirco-CT, tail vein injected si-AW011738 OVX mice were less osteoporotic than the control group. AW011738 inhibited osteoblast differentiation by regulating TREM1 expression through microRNA. Meanwhile, overexpression of miR-24-2-5p inhibited TREM1 expression to promote osteoblast differentiation. SIGNIFICANCE: Osteoclast-derived exosomes containing lncRNA AW011738 inhibit osteogenesis in MC3T3-E1 cells through the lncRNA AW011738/miR-24-2-5p/TREM1 axis and exacerbate osteoporosis in OVX mice.

18.
Int J Biol Macromol ; 277(Pt 2): 134338, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089539

RESUMO

Sodium alginate (SA) has gained widespread acclaim as a carrier medium for three-dimensional (3D) bioprinting of cells and a diverse array of bioactive substances, attributed to its remarkable biocompatibility and affordability. The conventional approach for fabricating alginate-based tissue engineering constructs entails a post-treatment phase employing a calcium ion solution. However, this method proves ineffectual in addressing the predicament of low precision during the 3D printing procedure and is unable to prevent issues such as non-uniform alginate gelation and substantial distortions. In this study, we introduced borate bioactive glass (BBG) into the SA matrix, capitalizing on the calcium ions released from the degradation of BBG to incite the cross-linking reaction within SA, resulting in the formation of BBG-SA hydrogels. Building upon this fundamental concept, it unveiled that BBG-SA hydrogels greatly enhance the precision of SA in extrusion-based 3D printing and significantly reduce volumetric contraction shrinkage post-printing, while also displaying certain adhesive properties and electrical conductivity. Furthermore, in vitro cellular experiments have unequivocally established the excellent biocompatibility of BBG-SA hydrogel and its capacity to actively stimulate osteogenic differentiation. Consequently, BBG-SA hydrogel emerges as a promising platform for 3D bioprinting, laying the foundation for the development of flexible, biocompatible electronic devices.

19.
J Biomed Mater Res A ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087511

RESUMO

Degradable phosphate glasses have shown favorable properties for tissue engineering. By changing the composition of the glasses, the degradation rate, and ion release are controllable. Zinc oxide can function as a glass network modifier and has been shown to play a positive role in bone formation. Also, phosphate glasses can easily be processed into microspheres, which can be used as microcarriers. This study aims to develop zinc phosphate glasses microspheres and explore the optimized size and composition for applications in bone tissue engineering. Zinc-titanium-calcium-sodium phosphate glasses with 0, 1, 3, 5, or 10 mol % zinc oxide were prepared and processed into microspheres. The smaller microspheres ranged in size from 50 to 106 µm, while the larger ones ranged from 106 to 150 µm. The characteristics of glasses were examined. The osteoblastic cell line MC3T3-E1 was cultured on the surface of microspheres and the cell viability was examined. To evaluate osteogenic differentiation, Alizarin Red S staining, quantitative reverse transcription polymerase chain reaction, and western blot analysis were performed after 14 days. Different sizes of zinc phosphate glass microspheres were successfully made. The glass microspheres with <10 mol % zinc oxide were able to support the adhesion and proliferation of MC3T3-E1 cell lines. The relative gene expression of BMP2 was significantly upregulated in the smaller glass microspheres containing 3 mol % zinc oxide (26-fold, p < .001) and both sizes of microspheres containing 5 mol % zinc oxide (smaller: 27-fold, p < .001; larger: 35-fold, p < .001). Additionally, cluster formation was observed in glass microspheres after 14 days, and the mineralization of MC3T3-E1 cell lines was promoted. Based on these findings, the glass microspheres containing 3-5 mol % of zinc oxide can promote osteogenic differentiation for MC3T3-E1 cells.

20.
J Orofac Orthop ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093345

RESUMO

AIMS: To investigate the effect of tumor necrosis factor (TNF) on the growth of human periodontal ligament (PDL) cells, their osteogenic differentiation and modulation of their matrix secretion in vitro. METHODS: The influence of 10 ng/ml TNF on proliferation and metabolic activity of PDL cells was analyzed by cell counting (DAPI [4',6-diamidino-2-phenylindole] staining) and the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In addition, cells were cultured under control conditions and osteogenic conditions (media containing 10 mM ß-glycerophosphate). Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALP), collagen type I alpha 1 chain (COL1A1), osteoprotegerin (OPG), and osteopontin (OPN) was performed after 7 and 14 days of cultivation. Calcium deposits were stained with alizarin red. RESULTS: Our studies showed that 10 ng/ml TNF did not affect the survival and metabolic activity of PDL cells. Quantitative expression analysis revealed that long-term cultures with TNF impaired osteogenic cell fate at early and late developmental stages. Furthermore, TNF significantly reduced matrix secretion in PDL cells. CONCLUSION: The present data confirm TNF as a regulatory factor of proinflammatory remodeling that influences the differentiation behavior but not the metabolism and cell proliferation of the periodontium. Therefore, TNF represents an interesting target for the regulation of orthodontic remodeling processes in the periodontium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...