Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 82, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859332

RESUMO

The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.


Assuntos
Anti-Infecciosos , Oncocercose , Tripanossomíase Africana , Animais , Macrolídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33139276

RESUMO

In the treatment of hookworm infections, pharmacotherapy has been only moderately successful and drug resistance is a threat. Therefore, novel treatment options including combination therapies should be considered, in which tribendimidine could play a role. Our aims were to (i) characterize the pharmacokinetics of tribendimidine's metabolites in adolescents receiving tribendimidine monotherapy or in combination with ivermectin or oxantel pamoate, (ii) evaluate possible drug-drug interactions (DDI), (iii) link exposure to response, and (iv) identify a treatment strategy associated with high efficacy, i.e., >90% cure rates (CRs), utilizing model-based simulations. A population pharmacokinetic model was developed for tribendimidine's primary and secondary metabolites, dADT and adADT, in 54 hookworm-positive adolescents, with combination therapy evaluated as a possible covariate. Subsequently, an exposure-response analysis was performed utilizing CRs as response markers. Simulations were performed to identify a treatment strategy to achieve >90% CRs. A two-compartmental model best described metabolite disposition. No pharmacokinetic DDI was identified with ivermectin or oxantel pamoate. All participants receiving tribendimidine plus ivermectin were cured. For the monotherapy arm and the arm including the combination with oxantel pamoate, Emax models adequately described the correlation between dADT exposure and probability of being cured, with required exposures to achieve 50% of maximum effect of 39.6 and 15.6 nmol/ml·h, respectively. Based on our simulations, an unrealistically high monotherapy tribendimidine dose would be necessary to achieve CRs of >90%, while combination therapy with ivermectin would meet this desired target product profile. Further clinical studies should be launched to develop this combination for the treatment of hookworm and other helminth infections.


Assuntos
Anti-Helmínticos , Infecções por Uncinaria , Adolescente , Ancylostomatoidea , Animais , Anti-Helmínticos/uso terapêutico , Infecções por Uncinaria/tratamento farmacológico , Humanos , Fenilenodiaminas/uso terapêutico
3.
Drug Dev Ind Pharm ; 45(2): 222-230, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30260721

RESUMO

Tablets for oral suspension (TOS) present a convenient alternative dosage form to conventional tablets. Dispersed in a glass of water or on a spoon, such tablets can be easily administered, which can become beneficial for pediatric or geriatric patients. The novel excipient functionalized calcium carbonate (FCC), consisting of calcium carbonate and calcium phosphate, has already shown to be suitable to produce orally disintegrating placebo tablets. In this study, the influence of formulation composition on disintegration time in water and artificial saliva was investigated using caffeine and oxantel pamoate as model drugs, reflecting BCS class 1 and BCS class 4, respectively. The optimized formulation for each model drug underwent a stress test. The results show that the drug content in DTs was not influenced by FCC under stressed conditions, however the disintegration and dissolution performance was affected by temperature and humidity. It can be concluded that it was possible to produce TOS characterized by rapid disintegration complemented by high physical stability of the tablets and chemical stability of the drug.


Assuntos
Cafeína/química , Carbonato de Cálcio/química , Pamoato de Pirantel/análogos & derivados , Administração Oral , Cafeína/administração & dosagem , Composição de Medicamentos , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Pamoato de Pirantel/administração & dosagem , Pamoato de Pirantel/química , Saliva/química , Solubilidade , Suspensões , Comprimidos
4.
Int J Parasitol Drugs Drug Resist ; 7(2): 159-173, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28371660

RESUMO

Millions of people are treated with anthelmintics to control soil-transmitted helminth infections; yet, drug distribution in the plasma and gastrointestinal tract compartments and the pathway of drug uptake into gastrointestinal nematodes responsible for the pharmacological effect are unknown. We assessed the distribution and uptake of albendazole, albendazole sulfoxide, albendazole sulfone in the hookworm Heligmosomoides polygyrus in vitro and in vivo as well as the distribution and uptake of albendazole, mebendazole, and oxantel pamoate in the whipworm Trichuris muris in vitro and in vivo. Oral and intraperitoneal treatments (100 mg/kg) were studied. Drug quantities in helminths and host compartments (stomach, the contents and mucosa of the small and large intestine, and the plasma) were determined using HPLC-UV/vis and anthelmintic activities were recorded using phenotypic readout. The influence of 1-aminobenzotriazole (ABT), an irreversible and unspecific cytochrome P450 inhibitor, on albendazole disposition in mice harboring H. polygyrus was evaluated. In vivo, albendazole was found in quantities up to 10 nmol per ten H. polygyrus and up to 31 nmol per ten T. muris. ABT did not change the levels of albendazole or its metabolites in the plasma of mice harboring H. polygyrus or in H. polygyrus, whereas drug levels in the gastrointestinal tract of host mice doubled. Mebendazole and oxantel pamoate quantities per ten T. muris were as high as 21 nmol and 34 nmol, respectively. Albendazole revealed a very dynamic distribution and high rate of metabolism, hence, H. polygyrus and T. muris are exposed to albendazole and both metabolites via multiple pathways. Diffusion through the cuticle seems to be the crucial pathway of oxantel pamoate uptake into T. muris, and likely also for mebendazole. No relationship between concentrations measured in helminths and concentrations in plasma, intestinal content and mucosa of mice, or drug efficacy was noted for any of the drugs studied.


Assuntos
Albendazol/análogos & derivados , Anti-Helmínticos/administração & dosagem , Mebendazol/administração & dosagem , Nematospiroides dubius/efeitos dos fármacos , Pamoato de Pirantel/análogos & derivados , Trichuris/efeitos dos fármacos , Administração Oral , Albendazol/administração & dosagem , Albendazol/farmacocinética , Animais , Anti-Helmínticos/farmacocinética , Trato Gastrointestinal/química , Injeções Intraperitoneais , Mebendazol/farmacocinética , Camundongos , Plasma/química , Pamoato de Pirantel/administração & dosagem , Pamoato de Pirantel/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...