Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.248
Filtrar
1.
Adv Colloid Interface Sci ; 333: 103304, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39357211

RESUMO

The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.

2.
Small ; : e2407674, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363789

RESUMO

Chemodynamic therapy (CDT) is an emerging therapeutic paradigm for cancer treatment that utilizes reactive oxygen species (ROS) to induce apoptosis of cancer cells but few biomaterials have been developed to differentiate the cancer cells and normal cells to achieve precise and targeted CDT. Herein, a simple cascade enzyme system is developed, termed hemin-micelles-GOx, based on hemin and glucose oxidase (GOx)-encapsulated Pluronic F127 (F127) micelles with pH-sensitive enzymatic activities. Histidine-tagged GOx can be easily chelated to hemin-F127 micelles via the coordination of histidine and ferrous ions in the center of hemin by simple admixture in an aqueous solution. In tumor microenvironment (TME), hemin-micelles-GOx exhibits enhanced peroxidase (POD)-like activities to generate toxic hydroxyl radicals due to the acidic condition, whereas in normal cells the catalase (CAT)-like, but not POD-like activity is amplified, resulting in the elimination of hydrogen peroxide to generate oxygen. In a murine melanoma model, hemin-micelles-GOx significantly suppresses tumor growth, demonstrating its great potential as a pH-mediated enzymatic switch for tumor management by CDT.

3.
Biomaterials ; 314: 122858, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39366182

RESUMO

The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.

4.
Macromol Biosci ; : e2400383, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401274

RESUMO

The therapeutic efficacy of bortezomib (BTZ) is often limited due to low solubility, poor stability in vivo and nonspecific toxicity. Herein, a kind of catechol-functionalized polyethylene glycol (mPEG-CA) is first synthesized and then mPEG-CA is readily used to conjugate with BTZ by the formation of dynamic boronate bonds to obtain PEGlyated BTZ prodrug (mPEG-CA-BTZ) with the ability of pH-controlled disassembly and drug release. The structure and morphology, physicochemical characteristics, drug loading, and release as well as in vitro cytotoxicity of mPEG-CA-BTZ nanoparticles are investigated in detail. The results demonstrated that mPEG-CA-BTZ can not only self-assemble into nanostructures with uniform size and stable dispersion in physiological pH condition (pH 7.4) but also respond to the tumor acid microenvironment and achieve pH-controlled BTZ release by acid-triggered cleavage of boronate bonds, decomposition of mPEG-CA-BTZ and thus disassembly of mPEG-CA-BTZ nanoparticles. mPEG-CA-BTZ nanoparticles are expected to have great potential as a promising nanoplatform for pharmaceutical formulations of BTZ to increase therapeutic efficacy and decrease side effects of BTZ. Considering the easily available and biocompatible excipients and simple preparation process, the strategy designed herein provides a facile and promising approach to synergistically integrate the function of PEGylation and pH-sensitiveness into boronic acid-containing small molecule pharmaceutical agents.

5.
ACS Nano ; 18(41): 27869-27890, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39356167

RESUMO

Systemic delivery of oncolytic adenovirus (oAd) for cancer gene therapy must overcome several limitations such as rapid clearance from the blood, nonspecific accumulation in the liver, and insufficient delivery to the tumor tissues. In the present report, a tumor microenvironment-triggered artificial lipid envelope composed of a pH-responsive sulfamethazine-based polymer (PUSSM)-conjugated phospholipid (DOPE-HZ-PUSSM) and another lipid decorated with epidermal growth factor receptor (EGFR) targeting peptide (GE11) (GE11-DOPE) was utilized to encapsulate replication-incompetent Ad (dAd) or oAd coexpressing short-hairpin RNA (shRNA) against Wnt5 (shWnt5) and decorin (dAd/LP-GE-PS or oAd/LP-GE-PS, respectively). In vitro studies demonstrated that dAd/LP-GE-PS transduced breast cancer cells in a pH-responsive and EGFR-specific manner, showing a higher level of transduction than naked Ad under a mildly acidic pH of 6.0 in EGFR-positive cell lines. In vivo biodistribution analyses revealed that systemic administration of oAd/LP-GE-PS leads to a significantly higher level of intratumoral virion accumulation compared to naked oAd, oAd encapsulated in a liposome without PUSSM or EGFR targeting peptide moiety (oAd/LP), or oAd encapsulated in a liposome with EGFR targeting peptide alone (oAd/LP-GE) in an EGFR overexpressing MDA-MB-468 breast tumor xenograft model, showing that both pH sensitivity and EGFR targeting ability were integral to effective systemic delivery of oAd. Further, systemic administration of all liposomal oAd formulations (oAd/LP, oAd/LP-GE, and oAd/LP-GE-PS) showed significantly attenuated hepatic accumulation of the virus compared to naked oAd. Collectively, our findings demonstrated that pH-sensitive and EGFR-targeted liposomal systemic delivery of oAd can be a promising strategy to address the conventional limitations of oAd to effectively treat EGFR-positive cancer in a safe manner.


Assuntos
Adenoviridae , Receptores ErbB , Terapia Genética , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Vírus Oncolíticos/genética , Camundongos , Adenoviridae/genética , Terapia Viral Oncolítica/métodos , Terapia Genética/métodos , Receptores ErbB/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Camundongos Nus , Camundongos Endogâmicos BALB C , Fosfatidiletanolaminas/química , Lipossomos/química , Lipídeos/química , Distribuição Tecidual , Peptídeos
6.
ACS Biomater Sci Eng ; 10(10): 6415-6424, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39356930

RESUMO

This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Glucose Oxidase , Glucose , Microgéis , Glucose/metabolismo , Glucose/química , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Microgéis/química , Preparações de Ação Retardada/química , Concentração de Íons de Hidrogênio , Resinas Acrílicas/química , Sistemas de Liberação de Medicamentos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos
7.
Beilstein J Nanotechnol ; 15: 1189-1196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355301

RESUMO

Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.

8.
J Control Release ; 375: 758-766, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39326501

RESUMO

Gastric ulcer is a common gastrointestinal disorder worldwide. Although its pathogenesis is unclear, the overproduction of reactive oxygen species (ROS), which results in an oxidative imbalance, has been reported as a central driving mechanism. Within the scope of this investigation, we developed two different self-assembling redox nanoparticles (RNPs) with ROS-scavenging features for the oral treatment of gastric ulcers. One of them, referred to as RNPN, disintegrates in response to acidic pH, whereas the other, denoted as RNPO, remains intact regardless of pH variations. Both types of RNPs showed different free radical scavenging activities in vitro. Protonation of the amino linkages in the side chains of RNPN caused the micelle structure to collapse and the nitroxide radicals encapsulated in the core were exposed to the outside, resulting in a significant increase in antioxidant capacity as the pH decreases. In contrast, RNPO maintained its spherical structure and consistent antioxidant reactivity irrespective of pH changes. The in vivo gastric retention of orally administered RNPN was significantly improved compared to that of RNPO which might be explained by the increased exposure of cationic protonating segments in RNPN on the negatively charged gastric mucosal surface. Owing to its improved gastric retention and enhanced ROS scavenging capacity under acidic pH conditions, RNPN exhibited superior protective effects against oxidative stress induced by aspirin in a gastric ulcer mouse model compared to RNPO. In addition, neither RNPN nor RNPO resulted in severe lethal effects or significant changes in the morphology of zebrafish embryos, indicating their biosafety. Our results suggest that the oral administration of RNPs has a high therapeutic potential for gastric ulcer treatment.

9.
Int J Pharm ; 665: 124705, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39307442

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease which associated with a maladaptive immune response driven by macrophages. In the development of AS, macrophages have gradually become new therapeutic targets due to their involvement in numerous inflammatory-related pathological processes in AS. However, despite significant breakthroughs in the development of macrophages targeting nanocarriers, unsatisfactory drug loading, and inexact drug release limited the development of nano-therapy. Therefore, developing a high drug-loading nanocarrier that can accurately release drugs at AS lesions is quite essential. Herein, we optimized double moieties coupled mPEG-PLA copolymer micelles via phenylboronic acid (PBA)-terminated on the hydrophobic chain and cRGD coupled in hydrophilic chain to enhance AS therapy. The micelles loaded with andrographolide (AND) exhibited advanced drug loading capacity, as PBA could form a reversible boronic ester with AND at physiological pH. The cRGD-modified AND-loaded micelles (RPPPA) could be efficaciously internalized by macrophages and efficiently prevent macrophages from differentiating to foam cells. After intravenous administration, RPPPA could accumulate in plaques and exert therapeutic effects. The optimistic therapeutic results of atherosclerosis were shown in RPPPA, included the fewer plaques, a smaller necrotic core, a more stabilized fibrous cap, and lower macrophages and MMP-9, compared with the control group. To sum up, the proposed encouraging therapy can contribute to high drug loading, exact target, and precise drug release as well as reduce inflammation for AS treatment.


Assuntos
Aterosclerose , Diterpenos , Portadores de Fármacos , Liberação Controlada de Fármacos , Macrófagos , Micelas , Polietilenoglicóis , Diterpenos/administração & dosagem , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Aterosclerose/tratamento farmacológico , Animais , Camundongos , Células RAW 264.7 , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Macrófagos/efeitos dos fármacos , Portadores de Fármacos/química , Masculino , Poliésteres/química , Ácidos Borônicos/química , Ácidos Borônicos/administração & dosagem , Camundongos Endogâmicos C57BL , Células Espumosas/efeitos dos fármacos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125161, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39316858

RESUMO

A novel fluorometric method for the determination of L-asparaginase, an enzyme crucial in cancer therapy and food industry applications, is presented. This sensitive and selective approach utilizes L-asparagine and two pH-sensitive carbon dots (blue-N-CDs and red-N-CDs) as probes. The interaction between L-asparagine and L-asparaginase liberates ammonia, causing an increase in pH. This pH change simultaneously decreases the fluorescence of blue-N-CDs while enhancing the emission of red-N-CDs, enabling ratiometric detection of L-asparaginase. Comprehensive characterization of both carbon dots and investigation of their response mechanism towards L-asparaginase were conducted using ultraviolet-visible spectrophotometry, fluorescence spectroscopy, and transmission electron microscopy (TEM) imaging techniques. The designed approach demonstrates outstanding linearity (20 to 2000 U L-1) and a low detection limit (6.95 U L-1) for L-asparaginase quantification. Moreover, when tested to human serum samples, the detection system exhibits outstanding selectivity and high recovery rates (96.15% to 99.75%) with low standard deviation, underscoring its suitability for practical implementation in clinical diagnostics.

11.
Food Chem ; 463(Pt 1): 141442, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39342685

RESUMO

This study incorporated purple sweet potato anthocyanin (PSPA) and silver-nanoparticles (AgNPs) into the chitosan/polyvinyl alcohol film matrix (PVA/CS) to successfully prepare a composite film, which effectively inhibited bacterial growth and indicated product freshness. The addition of AgNPs and PSPA led to a dense structure of the film, which effectively enhanced its physical properties, barrier properties and functional properties. The incorporation of PSPA made the composite film highly pH-sensitive, which exhibited distinct color changes in varying pH solutions. The PVA/CS-AgNPs-PSPA10 composite film with PSPA and AgNPs resulted the shelf life of strawberries to 13 days at 4 °C, which effectively reduced strawberry breathing during storage. Additionally, such composite film changed color from purple to yellow-purple, indicating the deterioration of strawberries. It also showed an antibacterial indication through its excellent antibacterial property and freshness indication performance, which demonstrated its significance in developing antibacterial indicator composite packaging materials for fruits and vegetables preservation.

12.
J Cell Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39219469

RESUMO

Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task, prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on ImageJ2/Fiji. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable to study distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNAREs protein reporters. Assessment of performance on synthetic data showed ExoJ is a robust tool, capable to correctly identify exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.

13.
Food Chem ; 463(Pt 1): 141092, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39255696

RESUMO

A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.

14.
Food Chem X ; 24: 101779, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39290749

RESUMO

A highly pH-responsive gelatin film incorporating purple cabbage anthocyanin (PCA) and chondroitin sulphate (CS)/tannic acid (TA) was developed. Co-pigmentation of PCA via CS/TA improved its photothermal stability and visibility of color change in gelatin film. The morphological and structural properties of CS-PCA and TA-PCA films revealed that a more stable network was formed as new hydrogen bonds were generated by the co-pigmentation. Meanwhile, the co-pigmentation improved film's mechanical and hydrophobic properties, expressed as higher tensile strength (16.65 and 17.97 Mpa) and lower water vapor permeability (1.45 and 1.41) in CS-PCA and TA-PCA films, compared to PCA film. CS-PCA and TA-PCA films showed distinct color transitions for chilled fish fillets during storage. Total color difference (ΔE) of CS-PCA and TA-PCA films correlated well with the deterioration indexes of total volatile base nitrogen (TVB-N). All the results provided a novel pH-sensitive intelligent packaging strategy by co-pigmenting CS/TA with PCA for freshness monitoring.

15.
Mater Today Bio ; 28: 101187, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221198

RESUMO

Silica-based scaffolds are promising in Tissue Engineering by enabling personalized scaffolds, boosting exceptional bioactivity and osteogenic characteristics. Moreover, silica materials are highly tunable, allowing for controlled drug release to enhance tissue regeneration. In this study, we developed a 3D printable silica material with controlled mesoporosity, achieved through the sol-gel reaction of tetraethyl orthosilicate (TEOS) at mild temperatures with the addition of different calcium concentrations. The resultant silica inks exhibited high printability and shape fidelity, while maintaining bioactivity and biocompatibility. Notably, the increased mesopore size enhanced the incorporation and release of large molecules, using cytochrome C as a drug model. Due to the varying surface charge of silica depending on the pH, a pH-dependent control release was obtained between pH 2.5 and 7.5, with maximum release in acidic conditions. Therefore, silica with controlled mesoporosity could be 3D printed, acting as a pH stimuli responsive platform with therapeutic potential.

16.
Talanta ; 281: 126840, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265419

RESUMO

A boronate-ester structure forming a pH-responsive polymer dot (Plu-PD) coated biosensor between carbonized-sp2 rich dopamine-alginate [PD(Alg)] and boronic acid-grafted Pluronic (BA-Pluronic) was developed for the electrochemical and fluorescence detection of cancer cells. The reduced fluorescence (FL) resulting from fluorescence resonance energy transfer (FRET) mediated by π-π interactions within Plu-PD was successfully reinvigorated through the specific cleavage of the boronate-ester bond, triggered by the acidic conditions prevailing in the cancer microenvironment. The anomalous variations in extracellular pH levels observed in cancer (pH ∼6.8), as opposed to the normal cellular pH range of approximately 7.4, serve as robust indicators for discerning cancer cells from their healthy counterparts. Moreover, the Plu-PD coated surface demonstrated remarkable adaptability in modulating its surface structure, concurrently exhibiting tunable electroconductivity under reduced pH conditions, thereby imparting selective responsiveness to cancer cells. The pH-modulated conductivity change was validated by a reduction in resistance from 211 ± 9.7 kΩ at pH 7.4 to 73.9 ± 9.4 kΩ and 61.5 ± 11.5 kΩ at pH 6.8 and 6.0, respectively. The controllable electrochemical characteristics were corroborated through in vitro treatment of cancer cells (HeLa, B16F10, and SNU-C2A) via LED experiments and wireless output analysis. In contrast, identical treatments yielded a limited response in normal cell line (CHO-K1). Notably, the Plu-PD coated surface can be seamlessly integrated with a wireless system to facilitate real-time monitoring of the sensing performance in the presence of cancer and normal cells, enabling rapid and accurate cancer diagnosis using a smartphone.

17.
Heliyon ; 10(17): e37341, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296244

RESUMO

In this study, a novel quantum dot (QD)-labeled specific anti-prostate-specific membrane antigen (PSMA) aptamer sequence was conjugated to a pH-responsive niosomal particle platform for delivery of docetaxel (DTX) components. The target cells were overexpressed PSMA. This strategy can minimize the systemic toxicity prevalent in DTX. Synthesis of pH-responsive niosomes was achieved by using thin-film hydration. The conjugation of the aptamer A10 to the niosomal particle was done via a disulfide bond. Furthermore, CdSe/ZnS QDs were fabricated using a hot-injection process, then were functionalized with mercapto propanoic acid (MPA) ligands and attached to the 3' terminal of aptamer via an Amide bind. Moreover, several characterization analyses including dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were performed. Additionally, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and apoptosis assays, as well as fluorescence microscopy, were used to assess the performance of the fabricated system. The data revealed a homogenous round-shaped population of niosomes with an average size of 200 nm and a negative surface charge was synthesized successfully. The FTIR and XRD evaluations confirmed the fabrication of both QDs and niosomes and the bioconjugation processes. The drug release happened in a controlled manner with a pH-sensitivity feature. The cellular uptake of aptamer-conjugated particles enhanced and consequently caused more cytotoxicity of prostate cancer cells with overexpression of PSMA. Furthermore, the QDs provided an ability to trace the treatment and its uptake via the targeted tissue. Overall, this study contributed to the development of a low-risk, highly specific platform for the delivery of both therapeutics and imaging agents.

18.
Food Chem ; 463(Pt 3): 141357, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39306990

RESUMO

Natural pigments are an indicator component in the freshness indicator, which is advantageous due to their safety, renewability, and low cost. However, freshness indicator with natural pigments as pH indicators has the problems of low stability and the color rendering domain could not effectively cover the shelf life of food. This paper describes the types and structures of natural pigments commonly used in freshness indicators and their color change mechanisms under different pH conditions. Also, the preparation methods of natural pigments freshness indicators are reviewed. Based on the current limitations and shortcomings faced by natural pigments freshness indicators, this paper highlights optimization strategies to enhance their sensitivity and stability, including modification, co-pigmentation, natural pigments mixing, encapsulation, and metal-ion complexation. The exploitation of these optimization strategies can help develop natural pigment-based intelligent packaging with superior performance to meet the food industry's needs for quality and safety monitoring.

19.
AAPS PharmSciTech ; 25(7): 216, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289249

RESUMO

This study aimed to develop paclitaxel (PTX)-loaded PEGylated (PEG)-pH-sensitive (SpH) liposomes to enhance drug delivery efficiency and cytotoxicity against MCF-7 breast cancer cells. PTX-loaded PEG-SpH liposomes were prepared using the thin film hydration method. ATR-FTIR compatibility studies revealed no significant interactions among liposome formulation components. TEM images confirmed spherical morphology, stability, and an ideal size range (180-200 nm) for improved blood circulation. At pH 5.5, liposomes exhibited increased size and positive zeta potential, indicating pH-sensitive properties due to CHEMS response to the acidic tumor microenvironment. Conversely, at pH 7.4, liposomes showed a slightly larger size (199.25 ± 1.64 nm) and a more negative zeta potential (-36.94 ± 0.32 mV), suggesting successful PEG-SpH surface modification, enhancing stability, and reducing aggregation. PTX-loaded PEG-SpH liposomes demonstrated high encapsulation efficiency (84.57 ± 0.92% w/w) and drug loading capacity (4.12 ± 0.26% w/w). In-vitro drug release studies revealed accelerated first-order PTX release at pH 5.5 and a controlled zero-order release at pH 7.4. Cellular uptake studies on MCF-7 cells demonstrated enhanced PTX uptake, attributed to mPEG-PCL incorporation prolonging circulation time and CHEMS facilitating PTX release in the tumor microenvironment. Furthermore, PTX-loaded PEG-SpH liposomes exhibited significantly improved cytotoxicity with an IC50 value of 1.107 µM after 72-h incubation, approximately 90% lower than plain PTX solution. Stability studies confirmed the robustness of the liposomal formulation under various storage conditions. These findings highlight the potential of PEGylated pH-responsive liposomes as effective nanocarriers for enhancing PTX therapy against breast cancer.


Assuntos
Neoplasias da Mama , Liberação Controlada de Fármacos , Lipossomos , Paclitaxel , Polietilenoglicóis , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Paclitaxel/química , Humanos , Lipossomos/química , Células MCF-7 , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos
20.
Food Chem X ; 23: 101639, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113745

RESUMO

As a new type of packaging method, the anthocyanin-based pH-sensitive indicator film has gained much attention owing to low cost, small size, and visually informative property. In this study, an intelligent film based on chitosan/gelatin (CG) matrix with Zingiber striolatum Diels (ZSD) anthocyanin for fish freshness monitoring was developed. The film properties, including thickness, moisture content, color, mechanical properties, UV-vis light barrier property, as well as pH and ammonia sensitivity, were evaluated. The CG-ZSD films exhibited a more compact structure when compared with the CG film. The CG-ZSD20 film showed the highest elongation at break (6.33 ± 0.62%) and lowest tensile strength (20.0 ± 0.58 MPa). FTIR spectra revealed the strong hydrogen bond interactions between ZSD and polymer matrix. Film incorporated with 15% anthocyanin extract has increased melting temperature at 118.9 °C, and a lower weight loss (13.8%) at melting temperature. In pH 1-14 buffer, the color of CG-ZSD films underwent a significant change from red to yellow-green. The CG-ZSD15 film was utilized for monitoring fish freshness and showed visible color changes from deep purple to brown. The total volatile basic nitrogen content and pH value changes of fish were closely related to the visual color changes in film. This demonstrated that the film was a highly pH-sensitive film for quantifying fish freshness in real-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...