Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.441
Filtrar
1.
Front Nutr ; 11: 1469028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246395

RESUMO

[This corrects the article DOI: 10.3389/fnut.2022.948671.].

2.
Environ Sci Technol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231302

RESUMO

Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.

3.
J Chromatogr A ; 1735: 465295, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39236359

RESUMO

A new method was evaluated and developed for the analysis of pesticides in sandy-loam soil by direct-immersion solid phase microextraction (DI-SPME) followed by gas chromatography tandem-mass spectrometry (GC-MS/MS) determination. Ten pesticides were selected based on a literature survey of the compounds reported to be present in EU soils. The extraction was performed using SPME LC-Tips, a new SPME configuration with the coated fibers attached to a disposable and easy-to-handle micropipette tip, which was immersed into a soil slurry made by the addition of an aqueous solution to the soil sample. Ten experimental parameters were evaluated with a Plackett-Burman design, after which the extraction time and percentage of organic solvent in the aqueous extraction were optimized separately. The two fiber chemistries available (PDMS/DVB and C18) were evaluated in parallel for the entire work. In the final method, slurry samples were made by adding an aqueous solution (6 % methanol v/v) to 2 g of soil. The fiber was conditioned and then inserted, for extraction, into the samples, stirred by a magnetic bar. Afterwards, the analytes were desorbed onto 100 µL of methanol. After the addition of analyte protectants (ethylglycerol, gulonolactone, and sorbitol) the extract was injected into the GC-MS/MS system. Isotopically labelled penconazole was used as internal standard. A calibration was performed by extracting spiked soil with analyte concentrations of 0.1-50 µg/kg. Coefficients of determination of the linear calibration were between 0.94-0.98 for the PDMS/DVB and 0.92-0.99 for the C18. Limits of detection range between 0.01-10 µg/kg for the PDMS/DVB and 0.1-10 µg/kg for the C18. Overall, the C18 analytically outperformed the PDMS/DVB but required a longer extraction time (120 min vs 75 min for the PDMS/DVB). This method allows automation and generates low residual toxic waste, having the potential to be introduced as a greener and simpler alternative to currently used sample preparation methodologies.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125071, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39236566

RESUMO

In this paper, a novel ratiometric fluorescent probe based on silicon quantum dots (SiQDs) has been developed for the sensitive detection of methyl parathion pesticide residues. The silicon quantum dots were prepared by a simple hydrothermal reaction process using 3-Aminopropyltriethoxysilane (APTES) as silicon resource and were characterized by the analysis of transmission electron microscopy, FTIR spectroscopy, and X-ray photoelectron spectroscopy. The silicon quantum dots displayed characteristic blue fluorescence emission at 440 nm. Tyrosinase can catalyze the oxidation of tyramine to form dopamine. Then, dopamine can interact with silicon quantum dots and effectively change the position of its fluorescence emission for redshifting to 540 nm. In the presence of organic phosphorus pesticides (OPPs), the activity of tyrosinase was inhibited, resulting in the inability to generate dopamine and the fluorescence emission at 440 nm remaining unchanged. As a model of organic phosphorus pesticides, methyl parathion (MP) was determined using this method, and the fluorescence intensity response values showed a good linear relationship with methyl parathion concentration in the range of 50-90 nM, with a detection limit of 0.149 nM. Due to its good performance of relative low detection limit, good selectivity and high reproducibility, this sensing system has been successfully applied to the detection of methyl parathion in environmental water samples and potato samples, which showed good prospects for application in the detection of organic phosphorus pesticide residues in more real samples.

5.
Ecotoxicol Environ Saf ; 284: 116994, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236652

RESUMO

The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions. Pesticide dissipation half-lives ranged from 27 to over 300 days, depending on the physicochemical properties of the pesticides and the soil conditions. In both autoclaved and non-autoclaved soil experiments, over 50 % of hydrophobic pesticides (dimethomorph > isoxaben > simazine = atrazine = carbendazim) dissipated within 200 days at 20°C and 30°C. However, the contribution of biodegradation to the overall dissipation of soluble pesticides (rac-metalaxyl > isoproturon = pyrimethanil > S-metolachlor) increased to over 75 % at 30°C and 40 % water content. This suggests that soluble pesticides became more bioavailable, with degradation activity increasing with higher temperature and soil water content. In contrast, the primary process contributing to the dissipation of hydrophobic pesticides was sequestration to soil. High-throughput amplicon sequencing analysis indicated that water content, temperature, and pesticides had domain-specific effects on the diversity and taxonomic composition of bacterial, fungal, and protistan communities. Soil physicochemical properties had a more significant effect than pesticides on the various microbial domains in the vineyard soil. However, pesticide exposure emerged as a secondary factor explaining the variations in microbial communities, with a more substantial effect on protists compared to bacterial and fungal communities. Overall, our results highlight the variability in the dissipation kinetics and processes of pesticides in a multi-contaminated vineyard soil, as well as their effects on bacterial, fungal, and protistan communities.

6.
J Agric Food Chem ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238336

RESUMO

Pesticide residues pose a significant threat to food safety and human health, necessitating the development of novel detection tools. Pesticides can inhibit the activity of certain biological enzymes, so enzyme inhibition is one of the methods of pesticide detection. In this study, we developed a novel near-infrared fluorescent probe named TCFCl-CES based on the tricyanofuran structure, for ultrasensitive detection of carboxylesterase (CES). TCFCl-CES exhibits strong and stable fluorescence, excellent specificity. Notably, the fluorescence intensity of TCFCl-CES shows a linear relationship with CES concentration, achieving an exceptionally low detection limit of 4.41 × 10-5 u/mL. This ultrasensitive probe can also effectively detect pesticide residues in vegetables and monitor CES activity in cells and liver tissues. TCFCl-CES stands out for its rapid and accurate detection capabilities, making it an essential tool for accurately monitoring pesticide residue. It also has great potential for tracking CES activity in biological systems. Additionally, it offers a robust solution for food safety and improving pesticide residue analysis.

7.
Pest Manag Sci ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243155

RESUMO

BACKGROUND: Wash-off of plant protection products from crops is represented in current European Union (EU) surface water models and future EU soil models by a coefficient that estimates its contribution to soil loadings following rainfall. Replacing the default coefficient with experimental data requires a harmonized protocol and this research forms part of the development of such a protocol. Following a successful test of the proposed protocol on a single crop across eight laboratories, a range of crops were tested in a single laboratory to assess the impact of crop type on the results. RESULTS: Six crops (wheat, rice, oil seed rape, cabbage, potato and French bean) were chosen, encompassing both hydrophobic and hydrophilic leaf surfaces. Tebuconazole (Folicur EW 250) was sprayed onto plants at a rate equivalent to 100 g ai ha-1 and subjected to a 1-h simulated rainfall event at an intensity of 20 mm h-1. Measured residues before and after rainfall were compared to calculate the percentage wash-off. The extent of wash-off was 66.4% with a 95% confidence interval of ±18.5% and the results were clustered according to leaf wettability, with lower wash-off in hydrophobic crops than in hydrophilic crops. CONCLUSION: Wash-off of this unoptimized formulation was similar across the crops, despite the use of crops with both hydrophobic and hydrophilic leaf surfaces. There is potential, therefore, to rationalize the number of crops used in future studies by selecting a small number of hydrophilic and/or hydrophobic crops to obtain a robust estimation of the extent of wash-off for use in environmental fate models. © 2024 Society of Chemical Industry.

8.
Biosens Bioelectron ; 266: 116747, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39243742

RESUMO

Expanding target pesticide species and intelligent pesticide recognition were formidable challenges for existing cholinesterase inhibition methods. To improve this status, multi-active Mel-Cu nanozyme with mimetic Cu-N sites was prepared for the first time. It exhibited excellent laccase-like and peroxidase-like activities, and can respond to some pesticides beyond the detected range of enzyme inhibition methods, such as glyphosate, carbendazim, fumonisulfuron, etc., through coordination and hydrogen bonding. Inspired by the signal complementarity of Mel-Cu and cholinesterase, an integrated sensor array based on the Mel-Cu laccase-like activity, Mel-Cu peroxidase-like activity, acetylcholinesterase, and butyrylcholinesterase was creatively constructed. And it could successfully discriminate 12 pesticides at 0.5-50 µg/mL, which was significantly superior to traditional enzyme inhibition methods. Moreover, on the basis of above array, a unified stepwise prediction model was built using classification and regression algorithms in machine learning, which enabled concentration-independent qualitative identification as well as precise quantitative determination of multiple pesticide targets, simultaneously. The sensing accuracy was verified by blind sample analysis, in which the species was correctly identified and the concentration was predicted within 10% error, suggesting great intelligent recognition ability. Further, the proposed method also demonstrated significant immunity to interference and practical application feasibility, providing powerful means for pesticide residue analysis.

9.
Environ Pollut ; : 124874, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251121

RESUMO

Large quantities of chlordecone-based insecticides were produced and used throughout the world. One of its most important uses was to control the damage caused by Cosmopolites sordidus in banana-growing regions. In the islands of Martinique and Guadeloupe, 18,000 ha of farmland are potentially contaminated. Despite the key role played by soil macrofauna in agroecosystems, there are currently no data on their contamination. The aim of this study was to explore the fate of chlordecone (CLD) and its transfer to different organisms of the soil food web. Seven species of invertebrates representing different taxonomic groups and trophic levels of the soil communities of Martinique were targeted and collected in six experimental banana fields, with a level of contamination within a range of values classically observed. Soil samples and macrofauna from the study sites were analysed for CLD and chlordecol (CLDOH) its main transformation product. The contamination of the soil fauna were related to δ15N (trophic level), proportion of soil ingestion (diet) and types of epidermis (mucus or exoskeleton) in order to study the different mechanisms of macrofauna contamination. Presence of CLD and CLDOH could be quantified in all the soil organisms from contaminated fields. Results showed a significant relationship between the CLD contamination of detritivorous and the ash content of their faeces, suggesting that soil ingestion was the main contamination pathway. In contrast, the exoskeleton-bearing diplopod Trigoniulus coralinus and the soft-bodied earthworm Eudrilus eugeniae, both detritivores with a comparable diet, had similar contamination levels, suggesting that the type of tegument has little influence on bioaccumulation. At the scale of the entire trophic network, a significant relationship was uncovered between δ15N values and CLD contamination of the fauna, therefore providing some in situ evidence for a bioamplification process along the soil food chain.

10.
Toxicol Res (Camb) ; 13(5): tfae134, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39233847

RESUMO

Background: The aim of the study was to investigate the effect of baicalin and baicalin-bovine serum albumin nanoparticles against bendiocarb exposure in rats. Methods: Eighty male Wistar Albino rats aged 4-6 weeks were used. Corn oil (vehicle) alone was administered to the control group. To other groups, BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 20 mg/kg.bw baicalin, baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 4 mg/kg.bw bendiocarb, combination of 4 mg/kg.bw bendiocarb and 20 mg/kg.bw baicalin, combination of 4 mg/kg.bw bendiocarb and BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw and combination of 4 mg/kg.bw bendiocarb and baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw was administered to animals by oral gavage with vehicle for 21 days, after which organs (liver, kidney, brain, testes, heart and lung) and blood samples were collected. Blood/tissue oxidative stress (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), serum biochemical (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP and pseudocholinesterase) and liver and kidney apoptotic/anti-apoptotic (caspase 3, 9, p53, Bcl-2 and Bax) parameters were evaluated. Body weights/organ weights and plasma/liver bendiocarb analyses were obtained. Conclusion: While bendiocarb administered alone caused oxidative stress/tissue damage, baicalin and baicalin-BSA nanoparticle showed a mitigating effect. However, this effect was more pronounced in the baicalin-BSA nanoparticle group. BSA-nanoparticle alone did not have a significant effect in reversing the adverse effect caused by bendiocarb.

11.
EFSA J ; 22(9): e8989, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39253338

RESUMO

The conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands for the pesticide active substance Bacillus subtilis strain RTI477 are reported. The context of the peer review was that required by Regulation (EC) No 1107/2009 of the European Parliament and of the Council. The conclusions were reached on the basis of the evaluation of the representative uses of B. subtilis strain RTI477 as a fungicide for the control of soil-borne diseases in greenhouses (permanent) and walk-in tunnels and field crops; by drip and drench irrigation on lettuce, cucurbit and solanaceous vegetables; field application by treating tubers whilst laying in furrow on potato; seed treatment application on maize, sunflower, sugar beet and winter oilseed rape. The reliable endpoints, appropriate for use in regulatory risk assessment, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are reported when identified.

12.
J Agric Food Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258845

RESUMO

In the realm of crop protection products, ensuring the safety of pollinators stands as a pivotal aspect of advancing sustainable solutions. Extensive research has been dedicated to this crucial topic as well as new approach methodologies in toxicity testing. Hence, within the agricultural and chemical industries, prioritizing pollinator safety remains a constant objective during the development of predictive tools. One of these tools includes computational models like quantitative structure-activity relationships (QSARs) that are valuable in predicting the toxicity of chemicals. This research uses bee toxicity data to develop artificial neural network classification models for predicting honey bee acute toxicity. Bee toxicity data from 1542 compounds were used to develop models; the sensitivity and specificity of the best model were 0.90 and 0.91, respectively. These in silico models can aid in the discovery of next-generation crop protection products. These tools can guide the screening and selection of next-generation crop protection molecules with high margins of safety to pollinators, and candidates with favorable sustainability profiles can be identified at the early discovery stage as precursors to in vivo data generation.

13.
PeerJ ; 12: e17843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247549

RESUMO

Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.


Assuntos
Hemípteros , Resistência a Inseticidas , Inseticidas , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Hemípteros/metabolismo , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Genômica , Metabolômica , Proteômica/métodos
14.
EFSA J ; 22(9): e8984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238571

RESUMO

The conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, Finland, and co-rapporteur Member State, Croatia, for the pesticide active substance amidosulfuron and the assessment of confirmatory data following the Article 12 MRL review are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659. The conclusions were reached on the basis of the evaluation of the representative uses of amidosulfuron as a post-emergence herbicide on winter cereals, spring cereals, flax and grass/pasture (all field uses). The reliable end points, appropriate for use in regulatory risk assessment are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are reported where identified.

15.
Int J Biol Macromol ; 279(Pt 2): 135262, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241993

RESUMO

Reducing pesticide residues while extending their efficacy period is a critical challenge in the development of controlled-release pesticides. This study focuses on loading avermectin onto lignin-modified epoxy resin nanocarriers via the creation of photostable nanocapsules (NCs) for evaluating their efficacy against Plutella xylostella. This study also assesses the NCs' resistance to water scour on plant leaves by comparing them with traditional preparations. These NCs feature a stable core-shell structure, an encapsulation efficiency of 92.90 % and slow-release properties. Compared to emulsifiable concentrate (EC) and microemulsion (ME) under UV irradiation, the loading of nanocarriers significantly prolonged the degradation time of avermectin by fivefold. The Nano-formula demonstrated enhanced insecticidal activity in comparison to traditional preparations. Field tests revealed that the efficacy of the NCs on Day 7 (92.55 %) and Day 14 (78.54 %) significantly surpassed that of traditional preparations. Additionally, NCs are more readily washed off cabbage leaves by water than EC and ME, aiding in the reduction of pesticide residues. This technology is particularly suitable for leafy vegetable crops in arid regions or greenhouses, enhancing effectiveness period while minimizing pesticide residues. This research offers novel insights and directions for the development of controlled-release pesticides.

16.
Biosens Bioelectron ; 267: 116756, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244836

RESUMO

In view of the current serious situation of organophosphorus pesticides (OPs) residue contamination, developing rapid and accurate OPs sensors is a matter of urgency. Redox-nanozyme based colorimetric sensors have been widely researched and utilized in OPs residue determination, but overcoming the interference of external redox substances and the effect of single-signal modes on detection performance is still a challenge. Here we fabricated a Zr-based metal-organic framework (MOF) featuring specific phosphatase-like activity and strong aggregation-induced emission (AIE) fluorescence for redox interference-free bimodal pesticide sensing. In the MOF, the activity-tunable Zr4+ node offered high hydrolytic activity and affinity toward P-O containing substrates, and the rigid framework structure effectively enhanced the fluorescence emission of the ligand 1,1,2,2-tetra(4-carboxylphenyl)ethylene. The developed AIEzyme could efficiently catalyze the hydrolysis of paraoxon to yellow p-nitrophenol, which further reduced the intrinsic AIE fluorescence of AIEzyme through internal filtration effect. Thereby, a natural enzyme-free dual-mode colorimetric/fluorescence approach was established for paraoxon detection with no interference from redox substances, and a smartphone-assisted portable platform was further developed to enable the facile, rapid, and high-performance sensing of the pesticide in complex practical matrices.

17.
Talanta ; 281: 126784, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245008

RESUMO

Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.

18.
Talanta ; 281: 126823, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245009

RESUMO

Organophosphorus pesticides (OPPs) present in tea infusions pose a serious threat to human health. In this study, a sensitive method for the determination of OPPs was developed based on a direct-immersion solid-phase microextraction (DI-SPME) probe. By fine adjustment of the ratio and one-step polymerization of dihydroxy-functionalized zirconium-based metal-organic framework UiO-66-(OH)2 and divinylbenzene-N-vinyl pyrrolidone (DVB-NVP) microspheres, the DVB-NVP@ UiO-66-(OH)2 (D-N@U) composite with an optimal hydrophilic-lipophilic balance (HLB) was achieved. Furthermore, D-N@U was adhesively bonded to stainless-steel wires to fabricate a DI-SPME probe. OPPs, especially those with nonpolar properties characterized by a high octanol-water partition coefficient (log KOW), were selectively and efficiently enriched on the D-N@U-coated DI-SPME probe from tea infusions. Coupled with a gas chromatography-flame photometric detector, the as-fabricated D-N@U-coated DI-SPME probe achieved good performance for OPPs analysis with a wide linear dynamic range of 0.10-500.00 µg/L and low detection limits of 1.96-6.69 ng/L. Moreover, in spiked samples, the recoveries and relative standard deviations were in the ranges of 73.12%-101.20 % and 1.03%-6.56 %, respectively. Owing to its simple operation, high extraction efficiency, and high sensitivity, this approach has great potential for the rapid determination of multiple pesticide trace-level residues in food.

19.
Sci Total Environ ; 952: 175935, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218110

RESUMO

Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.

20.
Data Brief ; 56: 110843, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39257689

RESUMO

To understand the impacts of pesticides on non-targets, it is important to understand what pesticide products are authorised for use. Different pesticide formulations with the same active ingredient can pose different risks to non-target organisms due to the inclusion of co-formulants which can modify their toxicity. We collated datasets from the United Kingdom (UK) and Ireland containing information on all the authorised pesticide products (pesticide formulations and adjuvants). We reveal that there are 2,463 pesticide formulations authorised for use by professionals in the UK, representing 266 active ingredients. We also collated information on amateur pesticide formulations, finding 520 authorised in the UK, and adjuvants (separate products added to a tank mix to alter the spray action), finding 298 authorised in the UK. Although we focus on the UK dataset, the same overall trends are mirrored in the Irish data. For the first time we have brought together data on the diversity of pesticides on sale in the UK and Ireland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...