Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
mSphere ; : e0065624, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360835

RESUMO

Organisms that are associated with feces ("fecal indicator organisms") are monitored to assess the potential for fecal contamination of surface water bodies in the United States. However, the effect of the complex mixtures of chemicals and the natural microbial community within surface water ("particles") on fecal indicator organism persistence is not well characterized. We aimed to better understand how particles, including biological (e.g., potential grazers) and inert (e.g., minerals) types, affect the fecal indicator organisms Escherichia coli K-12 ("E. coli") and bacteriophage MS2 in surface waters. A gradient of particles captured by a 0.2-µm-pore-size filter ("large particles") was generated, and the additional particles and dissolved constituents that passed through the filter were deemed "small particles." We measured the ratio of MS2 and E. coli that survived over a 24-h incubation period for each condition (0%-1,000% large-particle concentration in raw water) and completed a linear regression that included large- and small-particle coefficients. Particles were characterized by quantifying plankton, total bacterial cells, and total solids. E. coli and MS2 persistence was not significantly affected by large particles, but small particles had an effect in most waters. Small particles in higher-salinity waters had the largest, negative effect on E. coli and MS2 survival ratios: Significant small-particle coefficients ranged from -1.7 to -5.5 day-1 in the marine waters and -0.89 to -3.2 day-1 in the fresh and estuarine waters. This work will inform remediation efforts for impaired surface water bodies.IMPORTANCEMany surface water bodies in the United States have organisms associated with fecal contamination that exceed regulatory standards and prevent safe recreation. The process to remediate impaired water bodies is complicated because these fecal indicator organisms are affected by the local environmental conditions. For example, the effect of particles in surface water on fecal indicator concentrations are difficult to quantify in a way that is comparable between studies and water bodies. We applied a method that overcomes this limitation to assess the effects of large particles, including natural plankton that could consume the seeded fecal indicator organisms. Even in environmental water samples with diverse communities of plankton present, no effect of large particles on fecal indicator concentrations was observed. These findings have implications for the interpretation and design of future studies, including that particle characterization of surface water may be necessary to assess the fate of fecal indicators.

2.
Environ Res ; 263(Pt 2): 120114, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374755

RESUMO

Constructed wetlands are increasingly used as a solution to treat polluted water in natural environments. Located in the Albufera de València Natural Park, a constructed wetland was built in 2009 as a pilot project to act as an intermediary between low-quality waters and the largest protected coastal lagoon in the Iberian Peninsula. With a unique dataset spanning more than a decade (2009-2023), this study assessed changes in plankton communities both spatially (comparing six sampling sites) and temporally (comparing four periods of years). The results show how the constructed wetland, after nearly 15 years of operation, has not only maintained but also improved its capacity to enhance the biological quality of the water which is released into the protected lagoon, thus fulfilling one of the main aims of its construction. During the last period (2020-2023) of the time series, the constructed wetland outlets had significantly higher zooplankton biomass, particularly filter-feeding cladocerans, compared to the inlets. This clear improvement in the plankton community was due to management interventions (e.g., drying sectors of the constructed wetland during the summers since 2019) and the rise in temperature. These circumstances promoted earlier hatching of cladoceran diapause eggs from the sediments compared to previous years, maintaining their presence throughout all seasons. Consequently, the outlets of the constructed wetland had significantly lower phytoplankton abundance and sestonic chlorophyll-a concentrations than in the past, nearly oligotrophic states, and a reduced biovolume of potentially toxic cyanobacteria in the released waters.

3.
Ecol Evol ; 14(10): e70342, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39355105

RESUMO

The definition of an ecological niche makes it possible to anticipate the responses of a species to changing environmental conditions. Broad tolerance limits and a paucity of readily observable niches in the pelagic zone make it difficult to anticipate responses of the plankton community related to anthropogenic or environmental changes. Plankton distributions are closely linked to climate change and shape the seascape for higher trophic levels, so monitoring plankton distributions and defining ecological niches will help to understand and predict ecosystem responses. Here we apply a machine learning autoencoder and a density-based clustering algorithm to high-frequency datasets sampled with a ROTV Triaxus in the North Sea. The results indicate that in this highly dynamic environment, local hydrography prevents niche-based separation of plankton species at the sub-mesoscale, despite the availability of different habitats. Plankton patches were associated with naturally occurring frontal systems and anthropogenically induced upwelling-downwelling dipoles in the vicinity of offshore wind farms (OWFs).

4.
J Environ Manage ; 370: 122691, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357447

RESUMO

The trophic interactions between phytoplankton and zooplankton communities are essential for maintaining river ecosystem integrity and health. However, the driving mechanisms of land use and landscape patterns (LULP) affecting their trophic interactions are not fully understood. Therefore, the research objective of this study was to reveal the driving mechanisms of LULP on the interaction of phytoplankton with zooplankton through remote sensing interpretation of LULP in different buffer scales (500 m, 1000 m, 1500 m, and catchment), combined with water environment factors and plankton community structures analyzed. Results showed that LULP had the most significant effect on the phytoplankton and the zooplankton community structure at 500 and 1500 m buffer scales, respectively. Construction land (CON) and edge density (ED) most influenced phytoplankton and zooplankton community structure and their influence mechanisms were identified, i.e., CON increased the species (S) of phytoplankton by increasing the concentration of NO3-N in river water at the 500 m buffer scale. ED reduced the biological density (BD) of zooplankton by decreasing the concentration of heavy metal (HM) in river water at the 1500 m buffer scale. The water area (WAT) and ED showed the most significant influence on plankton interaction. Three pathways were found to explain their influence mechanisms, i.e., ED decreased the BD or Shannon-Weiner index (H') of zooplankton by increasing the dissolved oxygen (DO) to enhance BD of phytoplankton in river water at the 1500 m buffer scale; the WAT increased the BD of phytoplankton by increasing water temperature to reduce the H' of zooplankton at the 500 m buffer. These findings have implications for effective ecological planning of future human activities in the stream domain and maintaining river ecosystem health.

5.
PeerJ ; 12: e17972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39285919

RESUMO

The Xiao Jiang River, as a crucial element of ecological restoration in the upper reaches of the Yangtze River, plays an indispensable role in agricultural water utilization and water ecology within its watersheds. The water quality status of the Xiao Jiang River not only impacts local water-ecological equilibrium and economic benefits but also holds paramount importance for sustaining ecosystem health in the Yangtze River basin. Plankton surveys and environmental physicochemical detection were conducted in the major channel region of the Xiao Jiang River in dry and wet periods in 2022 to better understand the diversity of eukaryotic plankton and its community structure characteristics. Environmental DNA is an emerging method that combines traditional ecology with second-generation sequencing technology. It can detect species from a single sample that are difficult to find by traditional microscopy, making the results of plankton diversity studies more comprehensive. For the first time, environmental DNA was used to investigate eukaryotic plankton in the Xiao Jiang River . The results showed that a total of 881 species of plankton from 592 genera in 17 phyla were observed. During the dry period, 480 species belonging to 384 genera within17 phyla were detected, while, during the wet period, a total of 805 species belonging to 463 genera within 17 phyla were recorded. The phylum Ciliophora dominated the zooplankton, while the phylum Chlorophyta and Bacillariophyta dominated the phytoplankton. The presence of these dominant species indicate that the water quality conditions in the study area are oligotrophic and mesotrophic. Principal coordinate analysis and difference test showed that the number of plankton ASVs, abundance, species richness, dominating species, and diversity indices differed between the dry and wet periods. Spearman correlation analysis and redundancy analysis (RDA) of relative abundance data with environmental physicochemical factors revealed that water temperature (WT), dissolved oxygen (DO), potential of hydrogenacidity (pH), ammonia nitrogen (NH3-N), total nitrogen (TN), electrical conductivity (EC) and the determination of redox potential (ORP) were the main environmental physicochemical factors impacting the plankton community structure. The results of this study can serve as a provide data reference at the plankton level for water pollution management in the Xiao Jiang River, and they are extremely important for river ecological restoration and biodiversity recovery in the Yangtze River basin.


Assuntos
Biodiversidade , Plâncton , Rios , China , Rios/química , Plâncton/genética , Plâncton/classificação , Monitoramento Ambiental/métodos , Ecossistema , Eucariotos/genética , Eucariotos/classificação , Eucariotos/isolamento & purificação , DNA Ambiental/genética , DNA Ambiental/análise , Qualidade da Água
6.
Sci Total Environ ; 953: 176154, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260503

RESUMO

Run-of-river (ROR) dams, often perceived as having minimal environmental impact, can induce significant hydrodynamic changes that alter aquatic ecosystems. We investigated the impacts of an ROR dam on the Madeira River, the largest Amazon tributary, focusing on phytoplankton communities, their ecological implications, and related environmental factors. Our study examined changes in biomass and environmental factors (using General Linear Mixed Models - GLMM), species composition (using PERMANOVA) before and after damming, in both the main channel and tributaries (N = 549 samples). We also identified indicator species associated with different damming phases and regions through an indicator value analysis. The results showed that, following dam construction, the phytoplankton community changed in both the main channel and tributaries, with a shift from lotic diatoms to lentic phytoflagellates. This transition was likely facilitated by altered hydrodynamics and possibly influenced by the decomposition of flooded vegetation in the dam's influence zone. The decomposition of this vegetation could explain both the observed increase in oxygen consumption and the subsequent rise in phytoflagellate biomass after damming. However, despite the overall increase in phytoplankton biomass, the values remained within oligotrophic to mesotrophic conditions, consistent with the low nutrient concentrations recorded. However, we caution that the dam-created hydrodynamic conditions are optimal for phytoplankton growth, potentially exacerbating nutrient-related issues in the future. We recommend proactive management strategies to prevent nutrient enrichment from activities such as agriculture and livestock in isolated Amazon areas affected by dams, thereby mitigating potential degradation of water quality linked to increased phytoplankton biomass.


Assuntos
Biomassa , Monitoramento Ambiental , Fitoplâncton , Rios , Rios/química , Brasil , Ecossistema
7.
Open Res Eur ; 4: 177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39279823

RESUMO

Background: Siphonophores are diverse, globally distributed hydrozoans that play a central role in marine trophic webs worldwide. However, they still constitute an understudied fraction of the open ocean gelatinous taxa, mainly due to challenges related to siphonophore sampling and identification, which have led to a general knowledge gap about their diversity, distribution and abundance. Methods: Here, we provide a global overview of the oceanic vertical distribution of siphonophores using DNA metabarcoding data from 77 bulk mesozooplankton samples collected at four different depth ranges (0-200, 200-500, 500-1000, 1000-3000 m depth) along the Atlantic, Pacific, and Indian Oceans during the MALASPINA-2010 circumnavigation expedition. Results: We detected a total of 44 siphonophore species (which represents about one quarter of the described siphonophore species) from which 26 corresponded to Calycophores, 14 to Physonectae and 2 to Cystonectae. Our results suggest wider horizontal and vertical distributions of siphonophore species than previously described, including novel records of some species in certain oceanic basins. Also, we provide insights into the intraspecific variation of widely distributed species. Finally, we show a vertical structuring of siphonophores along the water column; Calycophores (siphonophores without pneumatophores) dominated the epipelagic (from the surface to 200 m depth) and upper mesopelagic layers (from 200 to 500 m depth), while the proportion Physonectids (siphonophores with pneumatophore) notably increased below 500 meters and were dominant at bathypelagic depths (>1000 m depth). Conclusions: Our results support that the siphonophore community composition is vertically structured. Also, we provide insights into the potential existence of genetic variations within certain species that dominate some ocean basins or depth ranges. To our knowledge, this is the first time that DNA metabarcoding data is retrieved to study siphonophore distribution patterns, and the study provides evidence of the potential of molecular techniques to study the distribution of gelatinous organisms often destroyed in net sampling.


This study gives a worldwide view of where siphonophores live in the open ocean. To do so, we used genetic data from samples from different depths and ocean basins that were collected during a circumnavigation expedition. We identified 42 species, representing about a quarter of all known siphonophores. Some species were found in places they hadn't been seen before so they seem to have wider distributions than previously thought. The study also looks at regional variations within species. Our results show that the siphonophore community is dominated by siphonophores without pneumatophores (gas-filled structure related with flotability) at shallow oceanic layers but dominated by siphonophores with pneumatophores in the deep sea. This is the first time that this kind of DNA data has been used to study the biogeography of these largely unknown creatures, showing it's a useful method for studying organisms that are often damaged when collected with nets.

8.
Environ Res ; 262(Pt 2): 119921, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233035

RESUMO

Microeukaryotic plankton are essential to marine food webs and biogeochemical cycles, with coastal seas playing a critical role in aquatic ecosystems. Understanding the diversity of microeukaryotic plankton, deciphering their community structure and succession patterns, and identifying the key factors influencing these dynamics remain central challenges in coastal ecology. In this study, we examine patterns of biodiversity, community structure, and co-occurrence using environmental DNA (eDNA)-based methods. Our results show a linear correlation between α-diversity and distance from the shore, with nutrient-related factors, especially inorganic nitrogen, being the primary determinants of the spatial distribution of plankton communities. Alternation of coastal habitat have shifted the succession patterns of coastal eukaryotic plankton communities from stochastic to deterministic processes. Additionally, our observations indicate that the topology and structure of eukaryotic plankton symbiotic patterns and networks are significantly influenced by environmental heterogeneity such as nutrients, which increase the vulnerability and decrease the stability of offshore ecological networks. Overall, our study demonstrates that the distribution of microeukaryotic plankton communities is influenced by factors related to environmental heterogeneity.

9.
Harmful Algae ; 138: 102699, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39244234

RESUMO

To assess the spatiotemporal evolution of the heterotrophic dinoflagellate Noctiluca scintillans in the North Sea, the Helgoland Roads time series and Continuous Plankton Recorder survey were analysed using generalized additive models. Over the last decades, blooms of N. scintillans have occurred more frequently and intensively in many regions. This harmful algal bloom forming species can alter food webs, reduce ecosystem productivity, and lead to economic losses while causing lower aquacultural yields. After the 1990s, N. scintillans abundances have significantly increased by 1.65-fold and a significant prolongation of the bloom window was found (from 27.5 to 98 days in recent decades) off the island of Helgoland, Germany. Significant correlations were found between bloom initiation and nutrients, as well as light availability since these factors lead to increased prey availability. Highest abundances of N. scintillans were associated with water temperatures around 17 °C and wind speed below 6 ms-1 causing dense surface accumulations. Solar radiation of more than 200 Wm-2 was identified as a main driver for post-bloom conditions as it can deteriorate the cells and lead to the decline of N. scintillans abundances. In the southern North Sea, N. scintillans occurrences have intensified and spread since the 1980s with hotspots identified as the coastal waters adjacent to the estuaries of the Elbe and Rhine rivers.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Mar do Norte , Dinoflagellida/fisiologia , Alemanha , Análise Espaço-Temporal
10.
Huan Jing Ke Xue ; 45(9): 5298-5307, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323148

RESUMO

To understand the structure of the plankton community and the ecological niche characteristics of their dominant species, sampling surveys of plankton were conducted in Baiyangdian Lake in the spring (March), summer (July), and autumn (September) of 2022. The changes in the plankton community during the three seasons were analyzed by constructing ecological network diagrams, non-metric multidimensional scaling analysis (NMDS), and the ecological niche width. The niche overlap of zooplankton dominant species was evaluated by the improved Levins' formula and Petraitis' index. The interspecific connectivity of dominant species was judged using the chi-square test and interspecies connectivity coefficients. The results showed that the niche width of plankton in the whole area was low. Zooplankton was dominated by rotifers, and phytoplankton was dominated by diatoms, cyanobacteria, and green algae. There were significant seasonal changes in the community structures of plankton. Compared with that in summer and autumn, there were fewer species of plankton in spring and lower interspecies connectivity. The overlap of dominant species of zooplankton was high in summer, and the interspecific competition was intensified, whereas the interspecific overlap of phytoplankton was at a low level in all three seasons. There was a significant positive correlation (W > χ20.05) between phytoplankton in summer and autumn, and the community structure was stable. The interdomain ecological network of zooplankton and phytoplankton showed a high negative correlation ratio in autumn, especially between copepods and cladoceras of zooplankton and chlorophyta and cyanophyta of phytoplankton. The plankton species in Baiyangdian Lake were abundant, with obvious seasonal differences. The dominant species were mainly a narrow ecological niche. The plankton community was generally in a stable state, and there was a strong predation relationship between copepods and cladoceras and green algae and cyanobacteria.


Assuntos
Ecossistema , Lagos , Fitoplâncton , Estações do Ano , Zooplâncton , China , Zooplâncton/classificação , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , Animais , Plâncton/classificação , Dinâmica Populacional , Monitoramento Ambiental/métodos , Cianobactérias/crescimento & desenvolvimento , Rotíferos/fisiologia , Rotíferos/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento
11.
Water Res ; 266: 122419, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270500

RESUMO

Understanding and predicting the ecological status of urbanized rivers is crucial for their restoration and management. However, the complex and nonlinear nature of ecological responses poses a challenge to the development of predictive models. Here, the study investigated and predicted the status of eukaryotic plankton communities in urbanized rivers by coupling environmental DNA metabarcoding, the alternative stable states theory, and supervised machine learning (SML) models. The results revealed two distinct states of eukaryotic plankton communities under similar environmental conditions: one state was characterized by the enrichment of a diverse phytoplankton population and the high relative abundance of protozoa, whereas the alternative state was characterized by abundant phytoplankton and fungi with an associated risk of algal blooms. Turbidity was identified as a key driver based on the SML model and Mantel test. Potential analysis demonstrated that the response pattern of eukaryotic plankton communities to turbidity was thresholds with hysteresis (Threshold1 = 17 NTU, Threshold2 = 24 NTU). A reduction in turbidity induced a regime shift in the eukaryotic plankton community toward an alternative state associated with a risk of algal blooms. In the prediction of ecological status, both SML models showed excellent performance (R2 > 0.80, RMSE < 0.1, Kappa > 0.70). Additionally, SHapley Additive exPlanations analysis identified turbidity, chlorophyll-a, chemical oxygen demand (COD), ammonia nitrogen and green algae's amplicon sequence variants as crucial features for prediction, with turbidity and COD showing a synergistic effect on ecological status. A framework was further proposed to enhance the understanding and prediction of ecological status in urbanized rivers. The obtained results of this study demonstrated the feasibility of using SML models to predict and explain the ecological status of urbanized rivers with alternative stable states. This provides valuable insights for the application of SML models in the restoration and management of urbanized rivers.

12.
Heliyon ; 10(18): e37788, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323781

RESUMO

The oligotrophic Adriatic Sea is characterized during a typical summer by low productivity caused by strong water column stratification, which inhibits vertical mixing and nutrient supply to the euphotic zone. These conditions can be disrupted by transient physical forcing, which enhances nutrient fluxes and creates localized hotspots of relatively high net primary production. In this study, plankton abundance and diversity were investigated in relation to the physical forcing and nutrient concentrations in an area affected by island-trapped waves (ITWs) near Lastovo Island (Adriatic Sea). The episodic ITW events resulted in enhanced uplift and vertical excursion of the thermocline, marked by anomalously higher nutrient concentrations and a corresponding increase in net primary production in the thermocline layer. Physicochemical properties explained 11.7 % (p = 0.002) of the variability in micro- and nanophytoplankton and 88.9 % (p = 0.001) in the picoplankton community. A significant response to the ITW phenomenon in the plankton community composition (p = 0.001) was observed for bacterioplankton. Among the identified amplicon sequence variances, primary producers were scarce and mainly represented cyanobacteria (Synechococcus strain CC9902), stramenopiles (Pelagomonas), and chlorophytes (Ostreococcus). The remaining amplicon sequence variances were assigned to the classes Copepoda, parasitic fungi (Meyerozyma spp.), mixotrophic dinoflagellates (family Peridiniales, mostly the genus Blastodinium), and parasitic Ciliophora (Scuticociliata). Bacterial ecological functions corresponded to chemoheterotrophic, degradation, and fermentation processes, whereas samples collected after the most intense ITW episode also showed abundant bacteria linked to microplastic degradation and parasitosis. These results highlight the ecological role of localized physical phenomena in enhancing nearshore primary productivity and fine shifts in plankton taxa in oligotrophic systems.

13.
Sci Total Environ ; 951: 175490, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147044

RESUMO

Alien invasive aquatic-plant (AIA) species are severely threatening the aquatic ecosystems worldwide, especially biodiversity. Although plankton have been used to monitor and address biodiversity, some gaps remain in understanding of the relationships between plankton communities and AIA species. Here, the effects of two typical AIA species (Pistia stratiotes and Eichhornia crassipes) on plankton communities in freshwater with a native plant Vallisneria natans were investigated using a 50-d microcosm experiment. Results showed that AIA species significantly decreased water pH and dissolved oxygen while increased oxidation-reduction potential (p < 0.05). AIA species, especially P. stratiotes, significantly inhibited dry biomass accumulation in V. natans by an average rate of 39.0 %, decreased water pH by up to 14.62 %, and increased aboveground lengths and chlorophyll contents of V. natans by up to 36.2 % and 63.7 % (p < 0.05), respectively. These species further modified the growth strategy of V. natans from dry biomass accumulation to aboveground elongation. Although the AIA species did not alter plankton diversity (p > 0.05), but they changed their dominant species, functional communities (e.g., Groups D and TB), and co-occurrence networks. P. stratiotes decreased the average degree of the networks by 12.37-19.02 % and the graph density by 10.53-14.47 %, while E. crassipes decreased the modularity of the networks by 10.24 % compared with the control (without AIA species), respectively. Overall, AIA species inhibited the growth of V. natans and decreased the stability of plankton communities and their resistance to environmental disturbances. These findings enhance our understanding of how AIA species affect the growth of native plants and variations in plankton communities, thereby providing a theoretical basis for improving the ecological function and safety of freshwater.


Assuntos
Biodiversidade , Água Doce , Espécies Introduzidas , Plâncton , Plâncton/fisiologia , Biomassa , Eichhornia , Ecossistema , Monitoramento Ambiental
14.
Sci Total Environ ; 951: 175657, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173769

RESUMO

The Southern Ocean surrounding Antarctica harbours some of the most pristine marine environments remaining, but is increasingly vulnerable to anthropogenic pressures, climate change, and invasion by non-native species. Monitoring biotic responses to cumulative impacts requires temporal and spatial baselines and ongoing monitoring - traditionally, this has been obtained by continuous plankton recorder (CPR) surveys. Here, we conduct one of the longest environmental DNA (eDNA) transects yet, spanning over 3000 nautical miles from Hobart (Australia) to Davis Station (Antarctica). We evaluate eDNA sampling strategies for long-term open ocean biomonitoring by comparing two water volume and filter pore size combinations: large (12 l with 20 µm) and small (2 l with 0.45 µm). Employing a broad COI metabarcoding assay, we found the large sample/pore combination was better suited to open ocean monitoring, detecting more target DNA and rare or low abundance species. Comparisons with four simultaneously conducted CPR transects revealed that eDNA detections were more diverse than CPR, with 7 (4 unique) and 4 (1 unique) phyla detections respectively. While both methods effectively delineated biodiversity patterns across the Southern Ocean, eDNA enables surveys in the presence of sea-ice where CPR cannot be conducted. Accordingly, 16 species of concern were detected along the transect using eDNA, notably in the Antarctic region (south of 60°S). These were largely attributed to hull biofouling, a recognized pathway for marine introductions into Antarctica. Given the vulnerability of Antarctic environments to potential introductions in a warming Southern Ocean, this work underscores the importance of continued biosecurity vigilance. We advocate integrating eDNA metabarcoding with long-term CPR surveys in the Southern Ocean, emphasising the urgency of its implementation. We anticipate temporal and spatial interweaving of CPR, eDNA, and biophysical data will generate a more nuanced picture of Southern Ocean ecosystems, with significant implications for the conservation and preservation of Antarctic ecosystems.


Assuntos
DNA Ambiental , Monitoramento Ambiental , Espécies Introduzidas , DNA Ambiental/análise , Regiões Antárticas , Monitoramento Ambiental/métodos , Biodiversidade , Oceanos e Mares , Organismos Aquáticos/genética , Biota , Mudança Climática , Austrália
15.
Bioresour Technol ; 412: 131381, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214178

RESUMO

Microbial electrosynthesis (MES) shows great promise for converting CO2 into high-value chemicals. However, cathode biofilm erosion by high CO2 sparging and the unclear role of plankton in MES hinders the continuous improvement of its performance. This study aims to enhance biofilm resistance and improve interactions between bio-cathode and plankton by upgrading waste algal biomass into 3-D porous algal electrode (PAE) with rough surface. Results showed that the acetate synthesis of PAE under 20 mL/min CO2 sparging (PAE-20) was up to 3330.61 mol/m3, 4.63 times that of carbon felt under the same conditions (CF-20). The microbial loading of PAE-20 biofilm was twice that of CF-20. Furthermore, higher cumulative abundance of functional microorganisms was observed in plankton of PAE-20 (55 %), compared to plankton of CF-20 (14 %), and enhanced biocathode-plankton interactions significantly suppressed acetate consumption. Thus, this efficient and sustainable 3-D electrode advances MES technology and offers new perspectives for waste biomass recycling.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Dióxido de Carbono , Eletrodos , Plâncton , Dióxido de Carbono/metabolismo , Plâncton/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Biomassa , Acetatos/metabolismo
16.
Sci Total Environ ; 952: 175793, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39191329

RESUMO

Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-to­phosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.


Assuntos
Mudança Climática , Monitoramento Ambiental , Plâncton , Oceano Atlântico , Ecossistema , Cadeia Alimentar
17.
Front Microbiol ; 15: 1424277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206362

RESUMO

Introduction: Analyzing the correlation between planktonic eukaryotic communities (PECs) and aquatic physicochemical parameters (APPs) provides important references for predicting the impact of climate change and human activities on aquatic ecosystems. Methods: To assess the influence of seasons and APPs on PEC structures in lakes and rivers, we utilized high-throughput sequencing of the 18S rRNA gene to analyze PEC structures in a lake and seven rivers in the Chaohu Lake Basin and analyzed their correlations with APPs. Results: Our results revealed that PEC structure was significantly affected by season, with the highest α-diversity observed in summer. Furthermore, we identified several APPs, including water temperature, conductivity, dissolved oxygen, pH, phosphate, total phosphorus, trophic level index (TLI), nitrate, ammonia nitrogen, and total nitrogen, that significantly influenced PEC structures. Specifically, we found that Stephanodiscus hantzschii, Simocephalus serrulatus, Cryptomonas sp. CCAC_0109, Pedospumella encystans, Actinochloris sphaerica, Chlamydomonas angulosa, Gonyostomum semen, Skeletonema potamos, Chlamydomonas klinobasis, Pedospumella sp., and Neochlorosarcina negevensis were significantly correlated to TLI, while Limnoithona tetraspina, Theileria sp., and Pseudophyllomitus vesiculosus were significantly correlated to the water quality index (WQI). However, our random forest regression analysis using the top 100 species was unable to accurately predict the WQI and TLI. Discussion: These results provide valuable data for evaluating the impact of APPs on PEC and for protecting water resource in the Chaohu Lake Basin.

18.
mSphere ; 9(9): e0039524, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39136485

RESUMO

Unraveling the effects of spatial gradients on microbiome assembly and association is a challenging topic that remains understudied in the coastal ecosystem. Here, we aimed to investigate the effects of spatial variation on the network complexity and stability of plankton microbiomes in the Bohai Sea and Yellow Sea. These seas serve as spawning and nursery grounds for economically important fisheries valued at billions of dollars annually. Environmental heterogeneity structures microbial communities into distinct spatial patterns, leading to complex direct/indirect relationships and broader ecological niches of bacterioplankton compared to microeukaryotic communities. Interestingly, salinity gradients positively influenced the richness of rare subgroups of bacterioplankton, while the rare microeukaryotic subgroups showed an opposite trend. Abundant subgroups of prokaryotic/eukaryotic microbiomes exhibited greater environmental niche breadth and lower phylogenetic distance compared to the rare subgroups. Stochastic processes contributed greatly to microbiome dynamics, and deterministic processes governed the bacterioplankton organization with a lower phylogenetic turnover rate. Compared to microeukaryotes, bacterioplankton exhibit higher network modularity, complexity, and robustness and lower fragmentation, and vulnerability. These observations offer vital insights into the anti-interference ability and resistance of plankton microbiomes in response to environmental gradients in terms of organization and survival strategy as well as their adaptability to environmental disturbances.IMPORTANCEAn in-depth understanding of community organization and stability of coastal microbiomes is crucial to determining the sustainability of marine ecosystems, such as the Bohai Sea and Yellow Sea. Distinct responses between prokaryotic and eukaryotic microbiomes to spatial heterogeneity were observed in terms of geographical distribution, phylogenetic distance, niche breadth, and community assembly process. Environmental variations are significantly correlated with the dynamics of rare eukaryotic plankton subcommunities compared to prokaryotic plankton subcommunities. Deterministic processes shaped prokaryotic plankton community organization with a lower phylogenic turnover rate. Rare subgroups had noticeably higher phylogenetic distance and lower niche breadth than the corresponding abundant subgroups. Prokaryotic microbiomes had higher molecular network complexity and stability compared to microeukaryotes. Results presented here show how environmental gradients alter both the geographical characteristics of the microbial organization in coastal seas and also their co-occurrence network complexity and stability and thus have critical implications for nutrient and energy cycling.


Assuntos
Eucariotos , Microbiota , Oceanos e Mares , Filogenia , Plâncton , Eucariotos/classificação , Eucariotos/genética , Plâncton/classificação , Plâncton/genética , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , China , Células Procarióticas/classificação , Biodiversidade
19.
Ecotoxicology ; 33(8): 884-892, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38992211

RESUMO

We experimentally tested the effects of different concentrations of cigarette butt leachate on freshwater phytoplankton chlorophyll-a, species richness, cell density, and community composition. For this, we sampled the phytoplankton from a eutrophic lake and acclimated it for 24 h in microcosms. We then conducted the experiment in microcosms maintained for 96 h. The experiment consisted of four treatments: control and leachate from 1 butt L-1 (T1), 5 butts L-1 (T5), and 10 butts L-1 (T10), which were prepared by diluting a stock solution of leachate from 50 butts L-1. We found that algal chlorophyll-a content was not affected by different leachate concentrations. In contrast, phytoplankton cell density decreased in a dose-dependent manner as concentrations of the leachate increased. Similarly, the number of species was highest in the control group relative to all other treatments, with T1 and T5 showing higher species richness than T10. Additionally, the exposition to different concentrations of the leachate impacted community composition across all treatments in comparison to the control group. Our results suggest that cigarette butt leachate alters the number of cells and species, as well as the distribution of abundance, without necessarily reducing chlorophyll-a concentrations. Our findings indicate that to gain a comprehensive understanding of the effects of cigarette butt leachate on freshwater ecosystems, it is essential to evaluate more realistic scenarios that incorporate aquatic communities, rather than isolated species.


Assuntos
Fitoplâncton , Poluentes Químicos da Água , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Clorofila A , Água Doce , Lagos , Clorofila , Produtos do Tabaco
20.
Mar Pollut Bull ; 206: 116759, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079475

RESUMO

The impact of polycyclic aromatic hydrocarbons (PAHs) on the marine food web is crucially understudied in the primary trophic system. We evaluated the seasonal dynamics of PAHs in microplankton in a polluted environment (Taiwan), northeastern South China Sea. Replicate size-fractionated microplankton (55-1000 µm) were freeze-dried, and PAHs were extracted with a 1:1 v/v ratio of acetone: n-hexane, then analyzed using GC-MS. Total PAHs ranged between 68 and 2548 ng/g dw in microplankton, greatest during spring (130-2548 ng/g), followed by autumn (135-772 ng/g) and summer (44-423 ng/g). Spatial distribution varied through seasons but was higher in the southern part (S6 > S4 > S5 > S2 > S3 > S1 > S7), dominated by higher-ring PAHs from mixed pyrogenic and petrogenic sources. PAHs are significantly correlated with environmental factors, especially in colder seasons and lower salinity areas. Suspended matter and plankton influenced PAH transport and partitioning seasonally. Plankton's PAHs seasonal changes and environmental influences are revealed in an anthropic environment.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Estações do Ano , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Plâncton , Taiwan , China , Cadeia Alimentar , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...