Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Br Poult Sci ; : 1-6, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257343

RESUMO

1. Salmonella Gallinarum strains isolated from a southern Brazil fowl typhoid outbreak were subjected to phenotypic and genotypic analyses to identify genetic elements that could improve prevention and control strategies.2. Whole-genome sequencing revealed the presence of the aac(6')-Iaa gene, conferring aminoglycoside resistance, along with novel chromosomal point mutations, including the first detection of parE p.S451F in Salmonella Gallinarum.3. Additionally, IncFII(S) plasmid replicons, Salmonella pathogenicity islands and 105 virulence genes associated with cell adhesion, invasion and antimicrobial peptide resistance were identified.4. These findings shed light on the molecular mechanisms of fowl typhoid and provide crucial insights into emerging antimicrobial resistance and virulence factors.

2.
BMC Microbiol ; 24(1): 64, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373913

RESUMO

BACKGROUND: Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS: 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS: 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC-2 and blaNDM. CONCLUSIONS: MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Plasmídeos/genética , beta-Lactamases/genética , Bactérias Gram-Negativas/genética , Carbapenêmicos/farmacologia , Fenótipo , Replicon , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/genética
3.
Antibiotics (Basel) ; 12(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998827

RESUMO

The first prospective surveillance of ESBL and colistin-resistant Escherichia coli recovered from sick pigs from a slaughterhouse in Central Greece aimed to investigate the spread of relevant genetic elements. In February 2021, 25 E. coli isolates were subjected to antimicrobial susceptibility testing using disk diffusion and broth microdilution techniques. PCR screening was conducted to identify ESBLs and mcr genes. Additional assays, encompassing mating-out procedures, molecular typing utilizing Pulsed-Field Gel Electrophoresis, multilocus sequence typing analysis, and plasmid typing, were also conducted. A 40% prevalence of ESBLs and an 80% prevalence of MCR-1 were identified, with a co-occurrence rate of 32%. The predominant ESBL identified was CTX-M-3, followed by SHV-12. Resistance to colistin, chloramphenicol, cotrimoxazol, and ciprofloxacin was detected in twenty (80%), fifteen (60%), twelve (48%), and four (16%) isolates, respectively. All blaCTX-M-3 harboring plasmids were conjugative, belonging to the incompatibility group IncI1, and approximately 50 kb in size. Those carrying blaSHV-12 were also conjugative, classified into incompatibility group IncI2, and approximately 70 kb in size. The mcr-1 genes were predominantly located on conjugative plasmids associated with the IncX4 incompatibility group. Molecular typing of the ten concurrent ESBL and MCR-1 producers revealed seven multilocus sequence types. The heterogeneous population of E. coli isolates carrying resistant genes on constant plasmids implies that the dissemination of resistance genes is likely facilitated by horizontal plasmid transfer.

4.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37660275

RESUMO

Acinetobacter baumannii is Gram-negative pathogen with extensive role in healthcare-associated infections (HAIs). Plasmids in this species are important carriers of antimicrobial resistance genes. In this work, we investigated the plasmids of 227 Brazilian A. baumannii genomes. A total of 389 plasmid sequences with 424 Rep proteins typed to 22 different homology groups (GRs) were identified. The GR2 plasmid group was the most predominant (40.6%), followed by the GR4 group (16.7%), representing ∼57% of all plasmids. There is a wide distribution of plasmids among the isolates and most strains carry more than one plasmid. Our analyses revealed a significant prevalence of GR4 plasmids in Brazilian A. baumannii genomes carrying several antimicrobial resistance genes, notably to carbapenem (39.43%). These plasmids harbor a MOBQ relaxase that might confer increased spreading potential in the environment. Most plasmids of the predominant groups belong to the same plasmid taxonomic unit (PTU-Pse7) and have a AbkA/AbkB toxin-antitoxin system that has a role in plasmid stability and dissemination of carbapenem resistance genes. The results of this work should contribute to our understanding of the molecular content of plasmids in a large and populous country, highlighting the importance of genomics for enhanced epidemiological surveillance.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Brasil/epidemiologia , Prevalência , Carbapenêmicos/farmacologia , Plasmídeos/genética
5.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436798

RESUMO

Neisseria gonorrhoeae is a significant threat to global health with an estimated incidence of over 80 million cases each year and high levels of antimicrobial resistance. The gonococcal ß-lactamase plasmid, pbla, carries the TEM ß-lactamase, which requires only one or two amino acid changes to become an extended-spectrum ß-lactamase (ESBL); this would render last resort treatments for gonorrhoea ineffective. Although pbla is not mobile, it can be transferred by the conjugative plasmid, pConj, found in N. gonorrhoeae. Seven variants of pbla have been described previously, but little is known about their frequency or distribution in the gonococcal population. We characterised sequences of pbla variants and devised a typing scheme, Ng_pblaST that allows their identification from whole genome short-read sequences. We implemented Ng_pblaST to assess the distribution of pbla variants in 15 532 gonococcal isolates. This demonstrated that only three pbla variants commonly circulate in gonococci, which together account for >99 % of sequences. The pbla variants carry different TEM alleles and are prevalent in distinct gonococcal lineages. Analysis of 2758 pbla-containing isolates revealed the co-occurrence of pbla with certain pConj types, indicating co-operativity between pbla and pConj variants in the spread of plasmid-mediated AMR in N. gonorrhoeae. Understanding the variation and distribution of pbla is essential for monitoring and predicting the spread of plasmid-mediated ß-lactam resistance in N. gonorrhoeae.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , beta-Lactamases/genética , Alelos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Gonorreia/genética
6.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107005

RESUMO

This article reports a rapid and unexpected spread of colonization cases of NDM-1 carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in a neonatal surgical unit (NSU) at Bambino Gesù Children's Hospital in Rome, Italy. Between the 16th of November 2020 and the 18th of January 2021, a total of 20 NDM-1 carbapenemase-producing K. pneumoniae (n = 8) and E. coli (n = 12) were isolated from 17 out of 230 stool samples collected from neonates admitted in the aforementioned ward and time period by an active surveillance culture program routinely in place to monitor the prevalence of colonization/infection with multidrug-resistant Gram-negative microorganisms. All strains were characterized by antimicrobial susceptibility testing, detection of resistance determinants, PCR-based replicon typing (PBRT) and multilocus-sequence typing (MLST). All isolates were highly resistant to most of the tested antibiotics, and molecular characterization revealed that all of them harbored the blaNDM-1 gene. Overall, IncA/C was the most common Inc group (n = 20/20), followed by IncFIA (n = 17/20), IncFIIK (n = 14/20) and IncFII (n = 11/20). MLST analysis was performed on all 20 carbapenemase-producing Enterobacterales (CPE) strains, revealing three different Sequence Types (STs) among E. coli isolates, with the prevalence of ST131 (n = 10/12; 83%). Additionally, among the 8 K. pneumoniae strains we found 2 STs with the prevalence of ST37 (n = 7/8; 87.5%). Although patient results were positive for CPE colonization during their hospital stay, infection control interventions prevented their dissemination in the ward and no cases of infection were recorded in the same time period.

7.
Microbiol Spectr ; 11(1): e0294722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36648229

RESUMO

Extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales have been increasingly isolated from pigs, highlighting their potential for transmission to humans living and/or working within pig farms. As longitudinal data on the prevalence and the molecular characteristics of such isolates from the high-risk farming population remain scarce, we performed a long-term study on 39 Dutch pig farms. Fecal samples from pigs, farmers, family members, and employees were collected during four sampling occasions with a 6-month period. The presence of ESBL-producing Enterobacterales and their molecular characteristics (ESBL gene, plasmid, and sequence types) were determined by standard methods. Data on personal and farm characteristics were collected using questionnaires. ESBL-producing Escherichia coli was present in pigs at least once for 18 of 39 farms and in 17 of 146 farmers, family members, and/or employees. Among these 417 E. coli isolates, blaCTX-M-1 was the most frequently observed ESBL gene in pigs (n = 261) and humans (n = 25). Despite the great variety in plasmid (sub)types and E. coli sequence types (STs), we observed genetic similarity between human- and pig-derived isolates in (i) ESBL gene, plasmid (sub)type, and ST, suggesting potential clonal transmission in seven farms, and (ii) only ESBL gene and plasmid (sub)type, highlighting the possibility of horizontal transfer in four farms. Five pig farmers carried ESBL producers repeatedly, of whom two carried an identical combination of gene, plasmid (sub)type, and ST over time. Human ESBL carriage was associated with both presence of ESBL producers in pigs and average number of hours working on the pig farm per week, while prolonged human carriage was observed only incidentally. IMPORTANCE Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a public health hazard due to reduced therapeutic options for the treatment of infections. Although direct contact with pigs is considered a risk factor for human ESBL-producing E. coli carriage through occupational exposure, nationwide data regarding the occurrence of such isolates among pigs and humans living and/or working on farms remain scarce. Therefore, we determined (i) the longitudinal dynamics in prevalence and molecular characteristics of ESBL-producing E. coli in Dutch pig farmers and their pigs over time and (ii) the potential transmission events between these reservoirs based on genetic relatedness and epidemiological associations in longitudinal data. Our data suggesting the possibility of clonal and horizontal dissemination of ESBL-producing Escherichia coli between pigs and pig farmers can be used to inform targeted intervention strategies to decrease the within-farm human exposure to ESBL-producing E. coli.


Assuntos
Infecções por Escherichia coli , Gammaproteobacteria , Humanos , Animais , Suínos , Escherichia coli/genética , Fazendas , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Estudos Longitudinais , beta-Lactamases/genética , Antibacterianos
8.
Jpn J Infect Dis ; 76(2): 126-134, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36450575

RESUMO

Penicillinase-producing Neisseria gonorrhoeae (PPNG) possessing blaTEM-135 is a serious public health threat. With only a single change in the amino acid sequence, blaTEM-135 could evolve into a TEM-type extended-spectrum beta-lactamase (ESBL), which hydrolyzes extended-spectrum cephalosporins, including ceftriaxone and cefixime. We investigated the molecular epidemiological characteristics, types of plasmids in PPNG isolates, and prevalence of PPNG clinical isolates producing TEM-135 beta-lactamases. N. gonorrhoeae multi-antigen sequence typing (NG-MAST) was used to determine the molecular epidemiological characteristics of 99 PPNG isolates collected from 2015 to 2017. A mismatch amplification mutation assay was used to examine the blaTEM-135 gene prevalence. Of the 89 identified NG-MAST sequence types, 65 (73.0%) were novel. Only 17.7% (43/243) of PPNG isolates belonged to 16 genogroups. The most frequent plasmid was African, followed by Rio/Toronto, and Asian. The blaTEM-135 allele was found in Rio/Toronto plasmids. The blaTEM-135 allele was present in 23.2% (23/99) of the PPNG isolates. PPNG isolates expressing TEM-135 beta-lactamase exhibited significantly higher penicillin MIC (minimum inhibitory concentration) values than TEM-1 PPNG isolates. The PPNG isolates showed high genetic diversity and a high proportion of blaTEM-135 alleles. Mutation of the blaTEM-135 allele is worrisome as only one mutation could cause TEM-1 to evolve into an ESBL variant that degrades ceftriaxone. Ongoing surveillance of blaTEM-135 and new PPNG isolates is imperative.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Humanos , Penicilinase/genética , Ceftriaxona/farmacologia , Epidemiologia Molecular , Tailândia/epidemiologia , Gonorreia/epidemiologia , beta-Lactamases/genética , Plasmídeos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
9.
Poult Sci ; 101(8): 101961, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687959

RESUMO

Duck salmonellosis is a common acute septic infectious disease that spreads rapidly, with serious harm to the duck breeding industry and public health. To date, there are few reports about the epidemiological characteristics of drug resistance in Salmonella from ducks. In this study, an epidemiological investigation was conducted on drug resistance of 110 Salmonella strains isolated from multiple duck farms in Shandong Province and surrounding areas, China. The multidrug-resistant (MDR) rate for 110 Salmonella strains was up to 71.82% (79/110), and 12 types of drug resistance genes were detected in all isolates, including ß-lactams, aminoglycosides, tetracycline, macrolides, and quinolones resistance genes. Using the multilocus sequence typing (MLST) based on 7 housekeeping genes, 13 various ST types were identified among all strains, and ST19 (32/110, 29.09%) was the primary type. As the dominant serotypes, S. Kottbus and S. Typhimurium were divided into multiple ST types. A total of 6 kinds of plasmid incompatibility groups were carried in the Salmonella strains, of which IncFIIs (29/110, 26.36%) was most prevalent, and the class I integrons were detected in 78.18% (86/110) of strains. Furthermore, we found that some drug resistance genes, plasmid incompatibility groups, and class I integrons coexist in the same strain. This phenomenon indicates that class I integrons and plasmids are important ways for the spread of drug resistance genes. Therefore, the spread of antibiotic resistance in Salmonella had been facilitated, especially erythromycin (108/110, 98.18%), streptomycin (93/110, 84.54%), and tetracycline (53/110, 48.18%). The above research results broadened ideas and provided directions for the transmission mechanism of Salmonella resistance.


Assuntos
Farmacorresistência Bacteriana Múltipla , Patos , Animais , Antibacterianos/farmacologia , Galinhas/genética , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Patos/genética , Fazendas , Integrons/genética , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus/veterinária , Salmonella , Tetraciclinas
10.
Antibiotics (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453183

RESUMO

The spread of carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), is a serious public health threat in pediatric hospitals. The associated risk in newborns is due to their underdeveloped immune system and limited treatment options. The aim was to estimate the prevalence and circulation of CPE among the neonatal intensive units of a major pediatric hospital in Italy and to investigate their molecular features. A total of 124 CPE were isolated from rectal swabs of 99 newborn patients at Bambino Gesù Children's Hospital between July 2016 and December 2019. All strains were characterized by antimicrobial susceptibility testing, detection of resistance genes, and PCR-based replicon typing (PBRT). One strain for each PBRT profile of K. pneumoniae or E. coli was characterized by multilocus-sequence typing (MLST). Interestingly, the majority of strains were multidrug-resistant and carried the blaNDM gene. A large part was characterized by a multireplicon status, and FII, A/C, FIA (15%) was the predominant. Despite the limited size of collection, MLST analysis revealed a high number of Sequence Types (STs): 14 STs among 28 K. pneumoniae and 8 STs among 11 E. coli, with the prevalence of the well-known clones ST307 and ST131, respectively. This issue indicated that some strains shared the same circulating clone. We identified a novel, so far never described, ST named ST10555, found in one E. coli strain. Our investigation showed a high heterogeneity of CPE circulating among neonatal units, confirming the need to monitor their dissemination in the hospital also through molecular methods.

11.
mSystems ; 7(1): e0083121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040701

RESUMO

We examined 185 complete, publicly available FII-33 plasmid sequences, characterizing their backbone and various insertions. The variable characteristic insertions facilitated evolutionary reconstruction for this plasmid group, beginning with the acquisition of a primary resistance region (PRR) over 10 years ago. FII-33 plasmids have evolved by acquiring additional resistance genes in the PRR via translocatable elements and by forming cointegrates with plasmids of other types. In all cases, IS26 is suspected to have mediated cointegration. Plasmid cointegration has contributed to the accumulation of resistance genes and may have increased the transmissibility, stability, and host range of the original FII-33 lineage. A particularly important sublineage was formed by a replicative IS26 cointegration event that fused an FII-33 plasmid with a blaKPC-2-containing R-type plasmid, interrupting the FII-33 traI gene encoding the conjugative relaxase. The FII-33:R cointegrate arose in the Klebsiella pneumoniae ST11 clone and remains largely confined there due to the abolition of transfer ability by the FII-33:R cointegration event. However, in some cases FII-33:R cointegrates have fused with additional plasmids and acquired complete transfer regions or oriT sequences that might restore their ability to transfer horizontally. Cointegration events across FII-33 plasmid sublineages have involved plasmids of at least 15 different types. This suggests that plasmid cointegration occurs readily and is more common than previously appreciated, raising questions about the effects of cointegrate formation on plasmid host range, stability, and capacity for horizontal transfer. Resources are provided for detecting and characterizing FII-33 plasmid sublineages from complete or draft genome sequences. IMPORTANCE Effective genomic surveillance of antibiotic-resistant bacterial pathogens must consider plasmids, which are frequently implicated in the accumulation and transfer of resistance genes between bacterial strains or species. However, the evolution of plasmids is complex, and simple typing or comparison tools cannot accurately determine whether plasmids belong to the same sublineages. This precludes precise tracking of plasmid movement in bacterial populations. We have examined the FII-33 group, which has been associated with multidrug resistance and particularly carbapenem resistance in clinically significant members of the Enterobacterales in China. Our analysis has provided insight into the evolution of this important plasmid group, allowing us to develop resources for rapidly typing them to the sublineage level in complete or draft genome sequences. Our approach will improve detection and characterization of FII-33 plasmids and facilitate surveillance within and outside China. The approach can serve as a model for similar studies of other plasmid types.


Assuntos
Proteínas de Bactérias , Elementos de DNA Transponíveis , Proteínas de Bactérias/genética , Plasmídeos , Resistência a Múltiplos Medicamentos , Genômica
12.
Methods Mol Biol ; 2392: 127-142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34773620

RESUMO

Plasmids transmissible by conjugation are responsible for disseminating antibiotic-resistance genes, making plasmid detection relevant for pathogen tracking. We describe the use of a multiplex PCR method for the experimental identification of specific plasmid taxonomic units (PTUs) of transmissible plasmids. The PCR primers were designed to target conserved segments of the relaxase MOB gene of PTUs encoding adaptive traits for enterobacteria (antimicrobial resistance, virulence, and metabolism). In this way, PlasTax-PCR detects the presence of these plasmids and allows their direct assignation to a PTU.


Assuntos
Plasmídeos/genética , Proteínas de Bactérias/genética , Conjugação Genética , Primers do DNA , Resistência Microbiana a Medicamentos , Enterobacteriaceae/genética , Transferência Genética Horizontal , Reação em Cadeia da Polimerase
13.
Front Vet Sci ; 8: 628239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718470

RESUMO

Rhodococcus equi is an animal pathogen and zoonotic human opportunistic pathogen associated with immunosuppressive conditions. The pathogenicity of R. equi is linked to three animal host-associated virulence plasmids encoding a family of "Virulence Associated Proteins" (VAPs). Here, the PCR-based TRAVAP molecular typing system for the R. equi virulence plasmids was applied to 26 R. equi strains isolated between 2010 and 2016 at the Institute of Tropical Medicine "Pedro Kourí," Cuba, from individuals living with HIV/AIDS. TRAVAP detects 4 gene markers, traA common to the three virulence plasmids, and vapA, vapB, and vapN specific to each of the host-associated plasmid types (equine pVAPA, porcine pVAPB, and ruminant pVAPN). Of the 26 isolates, six were positive to the vapB (porcine-type) marker, 4 (15.4%) to the vapA (equine-type) marker, and 1 (3.8%) to the vapN (ruminant-type) marker. Most of the isolates 14 (53.8%) were negative to all TRAVAP markers, suggesting they lacked a virulence plasmid. To our knowledge, this work is the first to report the molecular characterization of R. equi isolates from Cuba. Our findings provide insight into the zoonotic origin of R. equi infections in people and the potential dispensability of the virulence plasmid in immunosuppressed patients.

14.
Microb Pathog ; 148: 104429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781101

RESUMO

BACKGROUND: Klebsiella pneumoniae is a notorious pathogen with plasmid mediated resistance to all classes of antibiotics. It is important to determine the plasmid profile coding for resistance genes. Plasmid profile varies among geographical regions and tracking the types helps in determining the MDR and XDR K. pneumoniae spread especially in hospital setting. Aim of the present study was to determine the plasmid profile and types among bacteraemic K. pneumoniae. MATERIALS AND METHODS: Ninety consecutive K. pneumoniae collected over a period of three months from blood cultures were characterised by PCR for plasmid profile. Inc plasmid types were determined by PCR based replicon typing (PBRT) and carbapenemases were determined by multiplex PCR. For a subset of isolates hybrid assemblies were developed by sequencing with Ion Torrent and MinIon. RESULTS: Overall, PBRT showed 29% of isolates carried four plasmids including IncHI1B, IncFIA, IncFII(K) and IncR. The most common type of plasmid was IncHI1B (93%) followed by IncFIIK (89%) and IncR (82%). IncFIA was predominant among carbapenem resistant isolates. Almost all plasmids identified in K. pneumoniae were AMR plasmids, except two isolates which had virulence plasmids. IncX3 plasmid observed in this study was previously reported to be self-disseminating. Furthermore, the hybrid genome sequencing revealed complete structural arrangements of plasmids, which would be missed in short-read sequencing. NDM and OXA48-like were co-produced in 59% of the carbapenem resistant isolates. BlaOXA-232 was present on ColKP3; aac(6')-lb3 and rmtF on IncFIB. CONCLUSION: Diverse plasmid profile among the successive K. pneumoniae isolates indicates the transfer of resistance genes through different types of plasmids. IncHI1B, IncFIA, IncFIIK and IncR were the prevalent plasmid types. Hybrid assembly revealed blaOXA-232 was present on ColKP3 unlike global reports of IncL/M. Hybrid assemblies provide better plasmid structure that long and short read assemblies. There was no significant association of ß-lactamases with specific Inc groups in this study.


Assuntos
Klebsiella pneumoniae , Plasmídeos/genética , Replicon , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Farmacorresistência Bacteriana , Humanos , Infecções por Klebsiella , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , beta-Lactamases/genética
15.
Methods Mol Biol ; 2075: 285-294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584170

RESUMO

PlasmidFinder and in silico plasmid multiLocus sequence typing (pMLST) are two easy-to-use web tools for detection and characterization of plasmid sequences in whole-genome sequencing (WGS) data from Enterobacteriaceae. These tools have been adopted worldwide and facilitate plasmid detection and typing based on draft genomes of multi-drug-resistant Enterobacteriaceae. The PlasmidFinder database currently includes 133 unique plasmid replicon sequences. It was built starting with 126 sequences devised on fully sequenced plasmids available at the NCBI nucleotide database in 2014 and has been continuously updated to include novel replicons detected in more recently sequenced plasmids associated with the family Enterobacteriaceae. PlasmidFinder is usable for replicon sequence analysis of raw as well as assembled sequencing data. For pMLST analysis, a weekly updated database was generated from www.pubmlst.org and integrated into a web tool called in silico pMLST.


Assuntos
Biologia Computacional , Genoma Bacteriano , Tipagem de Sequências Multilocus , Plasmídeos/genética , Replicon , Software , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Humanos
16.
Microb Drug Resist ; 26(1): 14-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524558

RESUMO

In this study we characterized the genetic environment of blaCTX-M and blaCMY-2 genes carried by 46 Escherichia coli isolates obtained from 20 chicken carcasses produced by five different brands in Brazil, including exporters and antibiotic-free-certified producers, purchased between 2010 and 2014. Similar plasmids characterized according to size and incompatibility group (Inc) were identified in E. coli belonging to different MLST-ST collected, regardless of carcass brand or production system. Hybridization assays with transconjugant strains revealed that blaCMY-2 gene (n = 19) was located on 85 kb plasmids of IncB/O, IncI1, IncFIB, or nontypeable groups. blaCTX-M-8 (n = 9) was located on 90 kb IncI1 plasmids. blaCTX-M-2 (n = 14) was inserted in class 1 integrons and conjugated only by one isolate in a 125 kb IncP plasmid. blaCTX-M-15 (n = 1), rarely described in isolates from food-producing animals in South America, was characterized by whole genome sequencing of transconjugant; the gene was carried in a 49.3 kb IncX1 plasmid. Sequencing of bla gene-flanking regions indicated the association of these genes with previously described insertion sequences. These results suggest that conserved genetic environments are related to ESBL and pAmpC genes in the Brazilian chicken production chain.


Assuntos
Galinhas/microbiologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Brasil , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Sequências Repetitivas Dispersas , Plasmídeos , beta-Lactamases/genética
17.
Ann N Y Acad Sci ; 1457(1): 61-91, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469443

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) have been listed by the WHO as high-priority pathogens owing to their high association with mortalities and morbidities. Resistance to multiple ß-lactams complicates effective clinical management of CRE infections. Using plasmid typing methods, a wide distribution of plasmid replicon groups has been reported in CREs around the world, including IncF, N, X, A/C, L/M, R, P, H, I, and W. We performed a literature search for English research papers, published between 2013 and 2018, reporting on plasmid-mediated carbapenem resistance. A rise in both carbapenemase types and associated plasmid replicon groups was seen, with China, Canada, and the United States recording a higher increase than other countries. blaKPC was the most prevalent, except in Angola and the Czech Republic, where OXA-181 (n = 50, 88%) and OXA-48-like (n = 24, 44%) carbapenemases were most prevalent, respectively; blaKPC-2/3 accounted for 70% (n = 956) of all reported carbapenemases. IncF plasmids were found to be responsible for disseminating different antibiotic resistance genes worldwide, accounting for almost 40% (n = 254) of plasmid-borne carbapenemases. blaCTX-M , blaTEM , blaSHV , blaOXA-1/9 , qnr, and aac-(6')-lb were mostly detected concurrently with carbapenemases. Most reported plasmids were conjugative but not present in multiple countries or species, suggesting limited interspecies and interboundary transmission of a common plasmid. A major limitation to effective characterization of plasmid evolution was the use of PCR-based instead of whole-plasmid sequencing-based plasmid typing.


Assuntos
Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/genética , Plasmídeos/genética , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Citrobacter , Enterobacteriaceae/enzimologia , Escherichia coli , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Proteus , Providencia , Salmonella
18.
Microb Drug Resist ; 25(10): 1410-1423, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31314658

RESUMO

As resistance to the ß-lactam class of antibiotics has become a worldwide problem, multidrug-resistant (MDR) human (n = 243) and food animal (n = 211) isolates from Lagos, Nigeria were further tested to characterize ß-lactamase-encoding genes and plasmid replicons. Four ß-lactamase-encoding genes (blaCMY, blaCTX-M, blaOXA, and blaTEM) were detected using PCR-based replicon typing, 13 and 17 different replicons were identified using a subset of MDR E. coli from humans (n = 48) and animals (n = 96), respectively. Replicon types FIB and X2 were detected in equal numbers (2/48; 4.2% each) from human isolates, while type Y (16/96; 16.7%) was the most common type from animals. Only two replicon types, FIB and Y, were detected in both groups; all other types were confined to one group or the other, but not both. Using conjugation, replicon type Y, present in three donors, transferred in all three instances, whereas FIA transferred in 75% (3/4) of the matings. This study showed that ß-lactamase genes were prevalent in MDR E. coli from both humans and animals in Nigeria and also contained diverse plasmid replicons. As the replicon-associated genes were mobile, they are likely to continue disseminating among E. coli and facilitating transfer of associated ß-lactamase genes in this region.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Escherichia coli/efeitos dos fármacos , beta-Lactamases/genética , Animais , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Humanos , Nigéria/epidemiologia , Plasmídeos/genética , Replicon/genética
19.
Ann Lab Med ; 38(4): 324-330, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29611382

RESUMO

BACKGROUND: We investigated the molecular epidemiological characteristics and antimicrobial susceptibility pattern of penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates to monitor the change in distribution of bla(TEM) in Korea. METHODS: We collected 804 PPNG isolates from diverse hospitals and clinics mainly located in Seoul, Korea, over a period of 11 years (2005-2015). Isolate susceptibility to seven antimicrobials was determined using the agar dilution test. The molecular epidemiological characteristics of the isolates were determined by Sanger sequencing of bla(TEM), N. gonorrhoeae multiantigen sequence typing (NG-MAST) and plasmid typing. RESULTS: Among 72 fully sequenced PPNG isolates, sixteen (22.2%) possessed TEM-135. All TEM-135 isolates had a common silent mutation (c.18C>T), which was previously unreported. We observed a pattern of continuous increase in the number of TEM-135 isolates since 2012. The median and 90% minimum inhibitory concentration of azithromycin were substantially lower in the TEM-135 group than in the non-PPNG and TEM-1 groups. All TEM-135 isolates showed different NG-MAST types and predominantly harbored Toronto/Rio (75%) plasmids. A comprehensive comparative analysis of PPNG with TEM-135 according to NG-MAST, plasmid type, and year of isolation revealed a wide distribution. CONCLUSIONS: The proportion of TEM-135 PPNG has continuously increased since 2012, in association with clonal spread. The difference at position 18 of the TEM-135 sequence can be interpreted as the existence of multiple clonal complexes. The possibility that TEM-135 was acquired via foreign plasmids requires careful follow-up and continuous monitoring of TEM-135 to ascertain whether it constitutes a step towards evolutionary change.


Assuntos
Gonorreia/diagnóstico , beta-Lactamases/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Gonorreia/epidemiologia , Gonorreia/microbiologia , Humanos , Incidência , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/isolamento & purificação , Plasmídeos/genética , Plasmídeos/metabolismo , República da Coreia/epidemiologia
20.
Zoonoses Public Health ; 65(4): 454-458, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575785

RESUMO

Antibiotic resistance mediated by bacterial production of extended-spectrum beta-lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital-acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL-producing bacteria. Only limited data are available on the circulation of ESBL-producing bacteria in animals. Here, we report ESBL-producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of blaCTX-M-15 genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species-specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic-resistant strains of public health importance and to understand the origin of the observed resistance.


Assuntos
Quirópteros/microbiologia , Reservatórios de Doenças/veterinária , Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Gado/microbiologia , beta-Lactamases/biossíntese , Animais , Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Reservatórios de Doenças/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Humanos , Tipagem de Sequências Multilocus , Peru/epidemiologia , Plasmídeos/genética , Ovinos/microbiologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia , Zoonoses/epidemiologia , Zoonoses/microbiologia , Zoonoses/transmissão , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...