Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976834

RESUMO

Two-dimensional (2D) hybrid organic-inorganic metal halide perovskites offer enhanced stability for perovskite-based applications. Their crystal structure's soft and ionic nature gives rise to strong interaction between charge carriers and ionic rearrangements. Here, we investigate the interaction of photogenerated electrons and ionic polarizations in single-crystal 2D perovskite butylammonium lead iodide (BAPI), varying the inorganic lamellae thickness in the 2D single crystals. We determine the directionality of the transition dipole moments (TDMs) of the relevant phonon modes (in the 0.3-3 THz range) by the angle- and polarization-dependent THz transmission measurements. We find a clear anisotropy of the in-plane photoconductivity, with a ∼10% reduction along the axis parallel with the transition dipole moment of the most strongly coupled phonon. Detailed calculations, based on Feynman polaron theory, indicate that the anisotropy originates from directional electron-phonon interactions.

2.
Nano Lett ; 24(23): 7077-7083, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828922

RESUMO

The study of exciton polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here, through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe2/graphene heterostructures, where the excited exciton states (2s) in the WSe2 layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime. First, such a system enables an optical detection of integer and fractional quantum Hall states (e.g., ν = ±1/3, ±2/3) of monolayer graphene. Furthermore, we observe that the 2s state evolves into two distinct branches, denoted as attractive and repulsive polarons, when graphene is doped out of the incompressible quantum Hall gaps. Our work paves the way for the understanding of the excited composite quasiparticles and Bose-Fermi mixtures.

3.
Nanotechnology ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

The transition metal ions doping in II-VI semiconductor can produce exciton magnetic polaron (EMP) and localized EMP, in which contain longitudinal optical (LO) phonon coupling will be discussed in this paper. Transition metal ion doping in II-VI semiconductor for dilute magnetic semiconductor (DMS) show emission by magnetic polarons together with hot carrier effect that need to be understand by its optical properties. The high excitation power responsible for hot carrier effect that suppressed the charge trapping effect for low exciton binding energy (8.12 meV) semiconductor even at room temperature. The large polaron radius exhibits strong interaction between carrier and magnetic polaron results anharmonicty effect in which side-band energy overtone to LO phonon. The photon-like polariton show the polarized spin interaction with LO that show strong spin-phonon polariton at room temperature. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free exciton (FX), FX interact with 2LO phonon-spin interaction corresponding to 3T1(3F) → 1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at 3T1(3F) → 1E(1G). In addition, other d-d transition of single Ni ions (600-900 nm) appears at low energy side. Room temperature energy shift of 14-38 meV due to localized states with density of states tails extending far into bandgap related spin induced localization at valance band. These results show spin-spin magnetic coupling and spin-phonon interaction at room temperature that open a new horizon of optically controlled dilute magnetic semiconductor applications more realistic.

4.
J Phys Condens Matter ; 36(35)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38759682

RESUMO

The absorption features of optically generated, short-lived small bound electron polarons are inspected in congruent lithium tantalate, LiTaO3(LT), in order to address the question whether it is possible to localize electrons at interstitial TaV:VLidefect pairs by strong, short-range electron-phonon coupling. Solid-state photoabsorption spectroscopy under light exposure and density functional theory are used for an experimental and theoretical access to the spectral features of small bound polaron states and to calculate the binding energies of the small bound TaLi4+(antisite) and TaV4+:VLi(interstitial site) electron polarons. As a result, two energetically well separated (ΔE≈0.5 eV) absorption features with a distinct dependence on the probe light polarization and peaking at 1.6 eV and 2.1 eV are discovered. We contrast our results to the interpretation of a single small bound TaLi4+electron state with strong anisotropy of the lattice distortion and discuss the optical generation of interstitial TaV4+:VLismall polarons in the framework of optical gating of TaV4+:TaTa4+bipolarons. We can conclude that the appearance of carrier localization at TaV:VLimust be considered as additional intermediate state for the 3D hopping transport mechanisms at room temperature in addition to TaLi, as well, and, thus, impacts a variety of optical, photoelectrical and electrical applications of LT in nonlinear photonics. Furthermore, it is envisaged that LT represents a promising model system for the further examination of the small-polaron based photogalvanic effect in polar oxides with the unique feature of two, energetically well separated small polaron states.

5.
Proc Natl Acad Sci U S A ; 121(21): e2318151121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758696

RESUMO

Halide perovskites emerged as a revolutionary family of high-quality semiconductors for solar energy harvesting and energy-efficient lighting. There is mounting evidence that the exceptional optoelectronic properties of these materials could stem from unconventional electron-phonon couplings, and it has been suggested that the formation of polarons and self-trapped excitons could be key to understanding such properties. By performing first-principles simulations across the length scales, here we show that halide perovskites harbor a uniquely rich variety of polaronic species, including small polarons, large polarons, and charge density waves, and we explain a variety of experimental observations. We find that these emergent quasiparticles support topologically nontrivial phonon fields with quantized topological charge, making them nonmagnetic analog of the helical Bloch points found in magnetic skyrmion lattices.

6.
Nano Lett ; 24(27): 8335-8342, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38767281

RESUMO

The novel 2D quasi-hexagonal phase of covalently bonded fullerene molecules (qHP C60), the so-called graphullerene, has displayed far superior electron mobilities, if compared to the parent van der Waals three-dimensional crystal (vdW C60). Herein, we present a comparative study of the electronic properties of vdW and qHP C60 using state-of-the-art electronic-structure calculations and a full quantum-mechanical treatment of electron transfer. We show that both materials entail polaronic localization of electrons with similar binding energies (≈0.1 eV) and, therefore, they share the same charge transport via polaron hopping. In fact, we quantitatively reproduce the sizable increment of the electron mobility measured for qHP C60 and identify its origin in the increased electronic coupling between C60 units.

7.
Materials (Basel) ; 17(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255636

RESUMO

The t-J model remains an indispensable construct in high-temperature superconductivity research, bridging the gap between charge dynamics and spin interactions within antiferromagnetic matrices. This study employs the multiple Davydov Ansatz method with thermo-field dynamics to dissect the zero-temperature and finite-temperature behaviors. We uncover the nuanced dependence of hole and spin deviation dynamics on the spin-spin coupling parameter J, revealing a thermally-activated landscape where hole mobilities and spin deviations exhibit a distinct temperature-dependent relationship. This numerically accurate thermal perspective augments our understanding of charge and spin dynamics in an antiferromagnet.

8.
Adv Sci (Weinh) ; 11(7): e2305182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072637

RESUMO

The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm-1 (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm-1 (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.

9.
Adv Sci (Weinh) ; : e2305139, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949811

RESUMO

Photocatalysis and photoelectrocatalysis are promising ways in the utilization of solar energy. To address the low efficiency of photocatalysts and photoelectrodes, in-depth understanding of their catalytic mechanism is in urgent need. Recently, polaron is considered as an influential factor in catalysis, which brings researchers a new approach to modify photocatalysts and photoelectrodes. In this review, brief introduction of polaron is given first, followed by which models and recent experimentally observations of polarons are reviewed. Studies about roles of polarons in photocatalysis and photoelectrocatalysis are listed in order to provide some inspiration in exploring the mechanism and improving the efficiency of photocatalysis and photoelectrocatalysis.

10.
ACS Nano ; 17(14): 13997-14004, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450660

RESUMO

We study the early time carrier drift dynamics in CsPbI3 nanocrystal thin films with a sub 25 ps time resolution. Prior to trapping, carriers exhibit band-like transport characteristics, which is similar to those of traditional semiconductor solar absorbers including Si and GaAs due to optical phonon and carrier scattering at high temperatures. In contrast to the popular polaron scattering mechanism, the CsPbI3 nanocrystal thin film demonstrates the strongest optical phonon scattering mechanism among other inorganic-organic hybrid perovskites, Si, and GaAs. This ultrafast dynamics study establishes a foundation for understanding the fundamental carrier drift properties that drive perovskite nanocrystal optoelectronics.

11.
Nano Lett ; 23(11): 4708-4715, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220259

RESUMO

Propagation of light-emitting quasiparticles is of central importance across the fields of condensed matter physics and nanomaterials science. We experimentally demonstrate diffusion of excitons in the presence of a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. Light emission from tightly bound exciton states in electrically gated WSe2 monolayer is detected using spatially and temporally resolved microscopy. The measurements reveal a nonmonotonic dependence of the exciton diffusion coefficient on the charge carrier density in both electron and hole doped regimes. Supported by analytical theory describing exciton-carrier interactions in a dissipative system, we identify distinct regimes of elastic scattering and quasiparticle formation determining exciton diffusion. The crossover region exhibits a highly unusual behavior of an increasing diffusion coefficient with increasing carrier densities. Temperature-dependent diffusion measurements further reveal characteristic signatures of freely propagating excitonic complexes dressed by free charges with effective mobilities up to 3 × 103 cm2/(V s).

12.
Small ; 19(32): e2206587, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37038085

RESUMO

Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.

13.
Adv Mater ; 35(30): e2301453, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096832

RESUMO

Localized electron polarons formed through the coupling of excess electrons and ionic vibrations play a key role in the functionalities of materials. However, the mechanism of the coexistence of delocalized electrons and localized polarons remains underexplored. Here, the discovery of high-mobility 2D electron gas at the rutile TiO2 surfaces through argon ion irradiation induced oxygen vacancies is reported. Strikingly, the electron gas forms localized electronic states at lower temperatures, resulting in an abrupt metal-insulator transition. Moreover, it is found that the low-temperature conductivity in the insulating state is dominated by excess free electrons with a high mobility of ≈103 cm2 V-1 s-1 , whereas the carrier density is dramatically suppressed with decreasing temperature. Remarkably, it reveals that the application of an electric field can lead to a collapse of the localized states, resulting in a metallic state. These results reveal the strongly correlated/coupled nature between the localized electrons and high-mobility electrons and offer a new pathway to probe and harvest the exotic electron states at the complex oxide surfaces.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36774653

RESUMO

Utilizing pulsed laser deposition, a film of EuO1-x was deposited onto a Si(001) substrate with MgO buffer and compared to the same heterostructure with an additional BaTi2O5 thin film on top of the EuO1-x surface. X-ray diffraction (XRD) indicates the films crystallize into a preferred EuO(111) orientation; it also reveals the clear presence of EuSi2, which suggests Si or Eu diffuses across the MgO buffer layer. EuO1-x films exhibit a ferromagnetic (FM) signature and temperature-dependent exchange bias, indicated by MOKE measurements, suggesting the presence of a magnetic order well above the EuO Curie temperature with possible origins in charge carrier density near the interface. In comparison, an antiferromagnetic character persists well above the EuO Curie temperature of 69 K and the enhanced Curie temperature of 150 K for BaTi2O5 films grown on the EuO1-x films. The antiferromagnetic behavior is not seen in thicker EuO1-x thin films when integrated with other ferroelectric (FE) phases of the BaO-TiO2 system, suggesting an origin in the perturbed charge population at the BaTi2O5/EuO1-x interface.

15.
Adv Mater ; 35(9): e2208354, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36537857

RESUMO

All-inorganic lead-halide perovskite (LHP) (CsPbX3 , X = Cl, Br, I) quantum dots (QDs) have emerged as a competitive platform for classical light-emitting devices (in the weak light-matter interaction regime, e.g., LEDs and laser), as well as for devices exploiting strong light-matter interaction at room temperature. Many-body interactions and quantum correlations among photogenerated exciton complexes play an essential role, for example, by determining the laser threshold, the overall brightness of LEDs, and the single-photon purity in quantum light sources. Here, by combining cryogenic single-QD photoluminescence spectroscopy with configuration-interaction (CI) calculations, the size-dependent trion and biexciton binding energies are addressed. Trion binding energies increase from 7 to 17 meV for QD sizes decreasing from 30 to 9 nm, while the biexciton binding energies increase from 15 to 30 meV, respectively. CI calculations quantitatively corroborate the experimental results and suggest that the effective dielectric constant for biexcitons slightly deviates from the one of the single excitons, potentially as a result of coupling to the lattice in the multiexciton regime. The findings here provide a deep insight into the multiexciton properties in all-inorganic LHP QDs, essential for classical and quantum optoelectronic devices.

16.
Adv Mater ; 35(2): e2206980, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271591

RESUMO

Controlling the dimensional aspect of conductive coordination polymers is currently a key scientific interest. Herein, solution-based dimension control strategies are proposed for copper chloride thiourea (CuCl-TU) coordination polymers that enable centimeter-scale, 2D nanosheet formation for use as transparent electrodes. Despite the wide bandgap of CuCl-TU polymers (4.33 eV), through polaron-mediated electron transfer, the electrical conductivity of the 2D sheet at room temperature is able to reach 4.45 S cm-1 without intentional doping. This leads to a highly anisotropic electronic conductivity of up to the order of ≈103 differences, depending on the material orientation. Furthermore, by substituting alternative thiourea candidates, it is demonstrated that it is possible to predesign CuCl-TU structures with the desired functionality, stability, and porosity through dimensional control. These findings provide a blueprint to design next-generation transparent conducting materials that can operate at room temperature, thereby expanding their applicability to different fields.

17.
ACS Nano ; 16(12): 21259-21265, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520667

RESUMO

We find evidence for the formation and relaxation of large exciton polarons in 2D organic-inorganic hybrid perovskites. Using ps-scale time-resolved photoluminescence within the phenethylammonium lead iodide family of compounds, we identify a red shifting of emission that we associate with exciton polaron formation time scales of 3-10 ps. Atomic substitutions of the phenethylammonium cation allow local control over the structure of the inorganic lattice, and we show that the structural differences among materials strongly influence the exciton polaron relaxation process, revealing a polaron binding energy that grows larger (up to 15 meV) in more strongly distorted compounds.

18.
J Phys Condens Matter ; 35(9)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36538831

RESUMO

Amongst the various fast ion conductors, lanthanum excess lanthanum silicate oxyapatite (La10-α(SiO4)6O2+δ) has shown higher oxide ion conductivity with lower activation energy. On the other hand, the activation energy increases with La vacancies (La at 4f site). In the present work, La site is altered with Ca to form (La1-xCax)9.67(SiO4)6O2+δ(x=0.0,0.05,0.10and 0.15) with minimum oxygen non-stoichiometry and studied the hopping/tunnelling mechanism with the Ca substitution. The elemental content obtained from Rietveld refinement of the x-ray diffractograms suggests La deficiency with minimum oxygen deficiency. Further, XPS and TGA studies confirm the formation of La deficient samples. Temperature and frequency dependent ac conductivity in the temperature range (548-973 K) suggests that the conduction takes place via overlapping large polaron tunnelling. Further, the tunnelling distance and polaron radii as a function of temperature and frequency are observed to be altered with Ca and affecting the ion conducting channel through the elongation of La(6 h) triangles. Our study suggests the phononic contribution play a pivotal role in ionic transport.

19.
Nano Lett ; 22(22): 9092-9099, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342753

RESUMO

Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation. Namely, we demonstrate a record-high value of the nonlinear optical response in the nanostructured organic-inorganic halide perovskite MAPbI3, experimentally detected as a 19.7 meV blueshift of the polariton branch under femtosecond laser irradiation. This is substantially higher than characteristic values for the samples based on conventional semiconductors and monolayers of transition-metal dichalcogenides. The observed strong polaron-enhanced nonlinearity exists for both tetragonal and orthorhombic phases of MAPbI3 and remains stable at elevated temperatures.

20.
Top Catal ; 65(17-18): 1620-1630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405974

RESUMO

The local environment of metal-oxide supported single-atom catalysts plays a decisive role in the surface reactivity and related catalytic properties. The study of such systems is complicated by the presence of point defects on the surface, which are often associated with the localization of excess charge in the form of polarons. This can affect the stability, the electronic configuration, and the local geometry of the adsorbed adatoms. In this work, through the use of density functional theory and surface-sensitive experiments, we study the adsorption of Rh1, Pt1, and Au1 metals on the reduced TiO2(110) surface, a prototypical polaronic material. A systematic analysis of the adsorption configurations and oxidation states of the adsorbed metals reveals different types of couplings between adsorbates and polarons. As confirmed by scanning tunneling microscopy measurements, the favored Pt1 and Au1 adsorption at oxygen vacancy sites is associated with a strong electronic charge transfer from polaronic states to adatom orbitals, which results in a reduction of the adsorbed metal. In contrast, the Rh1 adatoms interact weakly with the excess charge, which leaves the polarons largely unaffected. Our results show that an accurate understanding of the properties of single-atom catalysts on oxide surfaces requires a careful account of the interplay between adatoms, vacancy sites, and polarons. Supplementary Information: The online version contains supplementary material available at 10.1007/s11244-022-01651-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...