Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39065809

RESUMO

Many routes may lead to the transition from a healthy to a diseased phenotype. However, there are not so many routes to travel in the opposite direction; that is, therapy for different diseases. The following pressing question thus remains: what are the pathogenic routes and how can be they counteracted for therapeutic purposes? Human cells contain >500 protein kinases and nearly 200 protein phosphatases, acting on thousands of proteins, including cell growth factors. We herein discuss neurotrophins with pathogenic or metabotrophic abilities, particularly brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), pro-NGF, neurotrophin-3 (NT-3), and their receptor Trk (tyrosine receptor kinase; pronounced "track"). Indeed, we introduced the word trackins, standing for Trk-targeting drugs, that play an agonistic or antagonistic role in the function of TrkBBDNF, TrkCNT-3, TrkANGF, and TrkApro-NGF receptors. Based on our own published results, supported by those of other authors, we aim to update and enlarge our trackins concept, focusing on (1) agonistic trackins as possible drugs for (1a) neurotrophin-deficiency cardiometabolic disorders (hypertension, atherosclerosis, type 2 diabetes mellitus, metabolic syndrome, obesity, diabetic erectile dysfunction and atrial fibrillation) and (1b) neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and multiple sclerosis), and (2) antagonistic trackins, particularly TrkANGF inhibitors for prostate and breast cancer, pain, and arrhythmogenic right-ventricular dysplasia. Altogether, the druggability of TrkANGF, TrkApro-NGF, TrkBBDNF, and TrkCNT-3 receptors via trackins requires a further translational pursuit. This could provide rewards for our patients.

2.
Biochem Biophys Rep ; 38: 101702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38596407

RESUMO

ProNGF (nerve growth factor) is a precursor of NGF and a signaling peptide exerting opposite effects on neuronal cells, i.e., apoptotic or neuritogenic. The conflicting biological activity of proNGF depends on the relative levels of two membrane receptors, TrkA and p75NTR. The effect of proNGF depends on the expression levels of these receptor proteins and their affinity to proNGF. Since the affinity of proteins has been studied with various recombinant proteins, it is worth comparing the affinity of these proteins within one experiment with the same method. This study examined the affinity between a recombinant proNGF and p75NTR expressed in common systems: bacterial, insect, and mammalian cells. The extracellular domain of p75NTR expressed in the insect or mammalian systems bound to native mature NGF, with a higher affinity for the insect receptor. The uncleavable proNGF was expressed in the three systems and they showed neuritogenic activity in PC12 cells. These recombinant proteins were used to compare their binding affinity to p75NTR. The insect p75NTR showed a higher binding affinity to proNGF than the mammalian p75NTR. The insect p75NTR bound proNGF from the insect system with the highest affinity, then from the mammalian system, and the lowest from the bacterial system. Conversely, the mammalian p75NTR showed no such preference for proNGF. Because the recombinant proNGF and p75NTR from different expression systems are supposed to have the same amino acid sequences, these differences in the affinity depend likely on their post-translational modifications, most probably on their glycans. Each recombinant proNGF and p75NTR in various expression systems exhibited different mobilities on SDS-PAGE and reactivities with glycosidases and lectins.

3.
FEBS Open Bio ; 14(4): 643-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429912

RESUMO

The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.


Assuntos
Fator de Crescimento Neural , Neurônios , Masculino , Ratos , Animais , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
4.
Brain Behav Immun ; 117: 347-355, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266662

RESUMO

Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.


Assuntos
Prosencéfalo Basal , Infecções por HIV , HIV-1 , Camundongos , Animais , Humanos , Lactente , Receptor de Fator de Crescimento Neural/metabolismo , Camundongos Transgênicos , HIV-1/metabolismo , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Infecções por HIV/metabolismo
5.
Mol Neurobiol ; 61(4): 2033-2048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843800

RESUMO

Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/metabolismo , Apoptose , Infarto da Artéria Cerebral Média/metabolismo
6.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072918

RESUMO

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

7.
Front Oncol ; 13: 661775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576898

RESUMO

Head and Neck Squamous Cell Carcinoma (HNSCC) remains a cancer with a poor prognosis, with a 5-year survival rate of less than 50%. Although epidermal growth factor receptor (EGFR) is almost always overexpressed, targeted anti-EGFR therapies have modest efficacy and are mainly used in palliative care. Growth factors such as Nerve Growth Factor (NGF) and its precursor proNGF have been shown in our laboratory to play a role in tumor growth and aggressiveness. Interestingly, an interaction between Sortilin, a proNGF receptor, and EGFR has been observed. This interaction appears to interfere with the pro-oncogenic signaling of EGF and modulate the membrane expression of EGFR. The aim of this study was to characterize this interaction biologically, to assess its impact on clinical prognosis and to analyze its role in the cellular trafficking of EGFR. Using immunohistochemical staining on tumor sections from patients treated at our university center and PLA (Proximity Ligation Assay) labeling, we showed that Sortilin expression is significantly associated with reduced 5-year survival. However, when Sortilin was associated with EGFR, this association was not found. Using the Cal-27 and Cal-33 cancer cell lines, we observed that proNGF reduces the effects of EGF on cell growth by inducing the internalization of its receptor. These results therefore suggest a regulatory role for Sortilin in the degradation or renewal of EGFR on the membrane. It would be interesting in future work to show the intracellular fate of EGFR and the role of (pro)neurotrophins in these mechanisms.

8.
Psychiatry Res ; 327: 115402, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544089

RESUMO

BACKGROUND: Neurotrophins (NTs) and their precursors (pro-NTs) are polypeptides with important roles in neuronal development, differentiation, growth, survival and plasticity, as well as apoptosis and neuronal death. Imbalance in NT levels were observed in schizophrenia spectrum disorders, but evidence in ultra-high risk for psychosis (UHR) samples is scarce. METHODS: A naturalistic sample of 87 non-help-seeking UHR subjects and 55 healthy controls was drawn from the general population. Blood samples were collected and NT-3, NT-4/5, BDNF, pro-BDNF, NGF, pro-NGF were analyzed through enzyme linked immunosorbent assay (ELISA). Information on cannabis and tobacco use was also collected. Logistic regression models and path analysis were used to control for confounders (tobacco, age, cannabis use). RESULTS: NT-4/5 was significantly decreased, and pro-BDNF was significantly increased in UHR individuals compared to controls. Cannabis use and higher NGF levels were significantly related to transition to psychiatric disorders among UHR subjects. Increased pro-BDNF and decreased NT-4/5 influenced transition by the mediation of perceptual abnormalities. CONCLUSIONS: Our study shows for the first time that NTs are altered in UHR compared to healthy control individuals, and that they can be a predictor of transition to psychiatric illnesses in this population. Future studies should employ larger naturalistic samples to confirm the findings.


Assuntos
Transtornos Mentais , Transtornos Psicóticos , Humanos , Fator Neurotrófico Derivado do Encéfalo
9.
Brain Sci ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371337

RESUMO

Mental health and wellbeing are increasingly threatened in the current post-pandemic times, with stress, especially in students, reaching preoccupying levels. In addition, while many educational programs are unidimensional (i.e., lacking integration between physical, emotional and cognitive elements), there are ways to promote physical, social and mental health in children and adolescents. In this opinion paper, we will discuss the importance of an integrative approach for health development and examine relevant factors, such as awareness and emotional intelligence. We will highlight evidence ranging from behavioral to electrophysiological, structural and molecular, and report several recent studies supporting the effectiveness of a holistic approach in supporting wellbeing and creativity in children and adults, and detailing a specific paradigm named the Quadrato Motor Training (QMT). QMT is a specifically structured movement meditation, involving cognitive, motor and affective components. Finally, we will support a holistic view on education, integrating motion, emotion and cognition to develop a person-centered, or in this case student-centered, approach to wellbeing and health.

10.
Biology (Basel) ; 12(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36979056

RESUMO

Nerve Growth Factor (NGF), the prototype of the neurotrophin family, stimulates morphological differentiation and regulates neuronal gene expression by binding to TrkA and p75NTR receptors. It plays a critical role in maintaining the function and phenotype of peripheral sensory and sympathetic neurons and in mediating pain transmission and perception during adulthood. A point mutation in the NGFB gene (leading to the amino acid substitution R100W) is responsible for Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), leading to a congenital pain insensitivity with no clear cognitive impairments, but with alterations in the NGF/proNGF balance. The available crystal structures of the p75NTR/NGF and 2p75NTR/proNGF complexes offer a starting point for Molecular Dynamics (MD) simulations in order to capture the impact of the R100W mutation on their binding energetic landscapes and to unveil the molecular determinants that trigger their different physiological and pathological outcomes. The present in silico studies highlight that the stability and the binding energetic fingerprints in the 2p75NTR/proNGF complex is not affected by R100W mutation, which on the contrary, deeply affects the energetic landscape, and thus the stability in the p75NTR/NGF complex. Overall, these findings present insights into the structural basis of the molecular mechanisms beyond the clinical manifestations of HSAN V patients.

11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675126

RESUMO

Glioblastoma multiforme (GBM) is the most lethal adult brain cancer. Temozolomide (TMZ), the standard chemotherapeutic drug used in GBM, has limited benefit and alternate therapies are needed to improve GBM treatment. Nerve growth factor (NGF) and its precursor proNGF are increasingly recognized as stimulators of human tumor progression. The expression and stimulatory effect of NGF on GBM cell growth has previously been reported, but the status of proNGF in GBM is unreported. In this study, we have investigated proNGF expression and biological activity in GBM. A clinical cohort of GBM (n = 72) and low-grade glioma (n = 20) was analyzed by immunohistochemistry for proNGF and digital quantification. ProNGF expression was significantly increased in GBM compared to low grade gliomas and proNGF was also detected in patient plasma samples. ProNGF was also detected in most GBM cell lines by Western blotting. Although anti-proNGF blocking antibodies inhibited cell growth in GBM cells with methylated MGMT gene promoter, targeting proNGF could not potentiate the efficacy of TMZ. In subcutaneous xenograft of human GBM cells, anti-proNGF antibodies slightly reduced tumor volume but had no impact on TMZ efficacy. In conclusion, this data reveals that proNGF is overexpressed in GBM and can stimulate cancer cell growth. The potential of proNGF as a clinical biomarker and therapeutic target warrants further investigations.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioblastoma , Glioma , Temozolomida , Humanos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
12.
Protein Sci ; 32(2): e4563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36605018

RESUMO

Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.


Assuntos
Fator de Crescimento Neural , Neurônios , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Domínios Proteicos , Neurônios/metabolismo , Trifosfato de Adenosina
13.
Exp Neurol ; 359: 114161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787888

RESUMO

The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1ß production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.


Assuntos
Receptor de Fator de Crescimento Neural , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/metabolismo , Astrócitos/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
14.
Front Aging Neurosci ; 15: 1298307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332808

RESUMO

Introduction: Frontotemporal dementia (FTD) is an extremely heterogeneous and complex neurodegenerative disease, exhibiting different phenotypes, genetic backgrounds, and pathological states. Due to these characteristics, and to the fact that clinical symptoms overlap with those of other neurodegenerative diseases or psychiatric disorders, the diagnosis based only on the clinical evaluation is very difficult. The currently used biomarkers help in the clinical diagnosis, but are insufficient and do not cover all the clinical needs. Methods: By the means of a new immunoassay, we have measured and analyzed the proNGF levels in 43 cerebrospinal fluids (CSF) from FTD patients, and compared the results to those obtained in CSF from 84 Alzheimer's disease (AD), 15 subjective memory complaints (SMC) and 13 control subjects. Results: A statistically significant difference between proNGF levels in FTD compared to AD, SMC and controls subjects was found. The statistical models reveal that proNGF determination increases the accuracy of FTD diagnosis, if added to the clinically validated CSF biomarkers. Discussion: These results suggest that proNGF could be included in a panel of biomarkers to improve the FTD diagnosis.

15.
Curr Oncol ; 29(11): 8103-8120, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354700

RESUMO

Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able to improve its prognosis. Nerve Growth Factor (NGF) is a neurotrophic factor involved in the regulation of neuronal functions through the binding of the Tropomyosin receptor kinase A (TrkA) and the Nerve Growth Factor receptor or Pan-Neurotrophin Receptor 75 (NGFR/p75NTR). In addition, its precursor (pro-NGF) can extert biological activity by forming a trimeric complex with NGFR/p75NTR and sortilin, or by binding to TrkA receptors with low affinity. Several examples of in vitro and in vivo evidence show that NGF is both synthesized and released by breast cancer cells, and has mitogen, antiapoptotic and angiogenic effects on these cells through the activation of different signaling cascades that involve TrkA and NGFR/p75NTR receptors. Conversely, pro-NGF signaling has been related to breast cancer invasion and metastasis. Other studies suggested that NGF and its receptors could represent a good diagnostic and prognostic tool, as well as promising therapeutic targets for breast cancer. In this paper, we comprehensively summarize and systematically review the current experimental evidence on this topic. INPLASY ID: INPLASY2022100017.


Assuntos
Neoplasias da Mama , Fator de Crescimento Neural , Feminino , Humanos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Receptor trkA/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor de Fator de Crescimento Neural , Transdução de Sinais/fisiologia
16.
Gene ; 838: 146729, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35835402

RESUMO

Two therapeutic agents targeting p75NTR pathways have been recently developed to alleviate retinopathy and bladder dysfunction in diabetes mellitus (DM), namely the small molecule p75NTR antagonist THX-B and a monoclonal antibody (mAb) that neutralizes the receptor ligand proNGF. We herein explore these two components in the context of diabetic kidney disease (DKD). Streptozotocin-injected mice were treated for 4 weeks with THX-B or anti-proNGF mAb. Kidneys were taken for quantification of microRNAs and mRNAs by RT-qPCR and for detection of proteins by immunohistochemistry, immunoblotting and ELISA. Blood was sampled to measure plasma levels of urea, creatinine, and albumin. DM led to increases in plasma concentrations of urea and creatinine and decreases in plasma albumin. Receptor p75NTR was expressed in kidneys and its expression was decreased by DM. All these changes were reversed by THX-B treatment while the effect of mAb was less pronounced. MicroRNAs tightly linked to DKD (miR-21-5p, miR-214-3p and miR-342-3p) were highly expressed in diabetic kidneys compared to healthy ones. Also, miR-146a, a marker of kidney inflammation, and mRNA levels of Fn-1 and Nphs, two markers of fibrosis and inflammation, were elevated in DM. Treatments with THX-B or mAb partially or completely reduced the expression of the aforementioned microRNAs and mRNAs. P75NTR antagonism and proNGF mAb might constitute new therapeutic tools to treat or slow down the progression of kidney disease in DM, along with other diabetic related complications. The translational potential of these strategies is currently being investigated.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Animais , Biomarcadores , Creatinina , Nefropatias Diabéticas/tratamento farmacológico , Inflamação , Camundongos , MicroRNAs/genética , Fator de Crescimento Neural/metabolismo , Estreptozocina
17.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457078

RESUMO

There is increasing evidence that nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA), the common neurotrophin receptor (NGFR/p75NTR) and the membrane receptor sortilin, participate in cancer growth. In melanoma, there have been some reports suggesting that NGF, TrkA and p75NTR are dysregulated, but the expression of the NGF precursor (proNGF) and its membrane receptor sortilin is unknown. In this study, we investigated the expression of NGF, proNGF, TrkA, p75NTR and sortilin by immunohistochemistry in a series of human tissue samples (n = 100), including non-cancerous nevi (n = 20), primary melanomas (n = 40), lymph node metastases (n = 20) and distant metastases (n = 20). Immunostaining was digitally quantified and revealed NGF and proNGF were expressed in all nevi and primary melanomas, and that the level of expression decreased from primary tumors to melanoma metastases (p = 0.0179 and p < 0.0001, respectively). Interestingly, TrkA protein expression was high in nevi and thin primary tumors but was strongly downregulated in thick primary tumors (p < 0.0001) and metastases (p < 0.0001). While p75NTR and sortilin were both expressed in most nevi and melanomas, there was no significant difference in expression between them. Together, these results pointed to a downregulation of NGF/ProNGF and TrkA in melanoma, and thus did not provide evidence to support the use of anti-proNGF/NGF or anti-TrkA therapies in advanced and metastatic forms of melanoma.


Assuntos
Melanoma , Nevo , Proteínas Adaptadoras de Transporte Vesicular , Humanos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
18.
Methods Mol Biol ; 2431: 249-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412281

RESUMO

Axonal transport is key for the survival and function of all neurons. This process is especially important in basal forebrain cholinergic neurons due to their extremely long and diffuse axonal projections. These neurons are critical for learning and memory and degenerate rapidly in age-related neurodegenerative disorders like Alzheimer's and Parkinson's disease. The vulnerability of these neurons to age-related neurodegeneration may be partially attributed to their reliance on retrograde axonal transport for neurotrophic support. Unfortunately, little is known about the molecular biology underlying the retrograde transport dynamics of these neurons due to the difficulty associated with their maintenance in vitro. Here, we outline a protocol for culturing primary rodent basal forebrain cholinergic neurons in microfluidic chambers, devices designed specifically for the study of axonal transport in vitro. We outline protocols for labeling neurotrophins and tracking neurotrophin transport in these neurons. Our protocols can also be used to study axonal transport in other types of primary neurons such as cortical and hippocampal neurons.


Assuntos
Neurônios Colinérgicos , Fatores de Crescimento Neural , Transporte Axonal/fisiologia , Prosencéfalo Basal/citologia , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Hipocampo/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Crescimento Neural/metabolismo
19.
Front Aging Neurosci ; 13: 741414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776928

RESUMO

The discovery of new biomarkers for Alzheimer's disease (AD) is essential for an accurate diagnosis, to conceive new strategies of treatments, and for monitoring the efficacy of potential disease-modifying therapies in clinical trials. proNGF levels in the cerebrospinal fluid (CSF) represent a promising diagnostic biomarker for AD, but its validation was hampered by the absence of a reliable immunoassay. In the literature, proNGF is currently measured in postmortem brain tissue by semiquantitative immunoblot. Here we describe the development and validation of a new method to measure proNGF in the CSF of living patients. This method, based on molecular size separation by capillary electrophoresis, is automated and shows a 40-fold increase in sensitivity with respect to the proNGF immunoblot, largely used in literature, and is robust, specific, and scalable to high-throughput. We have measured proNGF in the cerebrospinal fluid of 84 living patients with AD, 13 controls, and 15 subjective memory complaints (SMC) subjects. By comparing the proNGF levels in the three groups, we found a very significant difference between proNGF levels in AD samples compared with both controls and SMC subjects, while no significant difference was found between SMC and controls. Because of the development of this new immunoassay, we are ready to explore the potentiality of proNGF as a new biomarker for AD or subgroups thereof, as well as for other neurodegenerative diseases.

20.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639085

RESUMO

In recent decades, neurogenesis in the adult brain has been well demonstrated in a number of animal species, including humans. Interestingly, work with rodents has shown that adult neurogenesis in the dentate gyrus (DG) of the hippocampus is vital for some cognitive aspects, as increasing neurogenesis improves memory, while its disruption triggers the opposite effect. Adult neurogenesis declines with age and has been suggested to play a role in impaired progressive learning and memory loss seen in Alzheimer's disease (AD). Therefore, therapeutic strategies designed to boost adult hippocampal neurogenesis may be beneficial for the treatment of AD. The precursor forms of neurotrophins, such as pro-NGF, display remarkable increase during AD in the hippocampus and entorhinal cortex. In contrast to mature NGF, pro-NGF exerts adverse functions in survival, proliferation, and differentiation. Hence, we hypothesized that pro-NGF and its p75 neurotrophin receptor (p75NTR) contribute to disrupting adult hippocampal neurogenesis during AD. To test this hypothesis, in this study, we took advantage of the availability of mouse models of AD (APP/PS1), which display memory impairment, and AD human samples to address the role of pro-NGF/p75NTR signaling in different aspects of adult neurogenesis. First, we observed that DG doublecortin (DCX) + progenitors express p75NTR both, in healthy humans and control animals, although the percentage of DCX+ cells are significantly reduced in AD. Interestingly, the expression of p75NTR in these progenitors is significantly decreased in AD conditions compared to controls. In order to assess the contribution of the pro-NGF/p75NTR pathway to the memory deficits of APP/PS1 mice, we injected pro-NGF neutralizing antibodies (anti-proNGF) into the DG of control and APP/PS1 mice and animals are subjected to a Morris water maze test. Intriguingly, we observed that anti-pro-NGF significantly restored memory performance of APP/PS1 animals and significantly increase the percentage of DCX+ progenitors in the DG region of these animals. In summary, our results suggest that pro-NGF is involved in disrupting spatial memory in AD, at least in part by blocking adult neurogenesis. Moreover, we propose that adult neurogenesis alteration should be taken into consideration for better understanding of AD pathology. Additionally, we provide a new molecular entry point (pro-NGF/p75NTR signaling) as a promising therapeutic target in AD.


Assuntos
Doença de Alzheimer/complicações , Encéfalo/patologia , Transtornos da Memória/patologia , Fator de Crescimento Neural/metabolismo , Neurogênese , Neurônios/patologia , Precursores de Proteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator de Crescimento Neural/genética , Neurônios/metabolismo , Precursores de Proteínas/genética , Memória Espacial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...