Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 550, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34275445

RESUMO

BACKGROUND: Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS: Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION: This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.


Assuntos
Adesinas Bacterianas , Proteínas de Bactérias , Adesinas Bacterianas/genética , Bactérias/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Bactérias Gram-Positivas , Proteínas de Membrana
2.
Curr Biol ; 31(14): 3073-3085.e3, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34077702

RESUMO

Integrins are transmembrane receptors that activate signal transduction pathways upon extracellular matrix binding. The integrin-mediated adhesive complex (IMAC) mediates various cell physiological processes. Although the IMAC was thought to be specific to animals, in the past ten years these complexes were discovered in other lineages of Obazoa, the group containing animals, fungi, and several microbial eukaryotes. Very recently, many genomes and transcriptomes from Amoebozoa (the eukaryotic supergroup sister to Obazoa), other obazoans, orphan protist lineages, and the eukaryotes' closest prokaryotic relatives, have become available. To increase the resolution of where and when IMAC proteins exist and have emerged, we surveyed these newly available genomes and transcriptomes for the presence of IMAC proteins. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought and that co-option of this apparently ancient protein complex was key to the emergence of animal-type multicellularity. The role of the IMACs in amoebozoans is unknown, but they play critical adhesive roles in at least some unicellular organisms.


Assuntos
Adesão Celular , Eucariotos , Integrinas , Amoeba , Animais , Evolução Molecular , Fungos , Filogenia
3.
Front Genet ; 11: 515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582278

RESUMO

Proteins play primary roles in important biological processes such as catalysis, physiological functions, and immune system functions. Thus, the research on how proteins evolved has been a nuclear question in the field of evolutionary biology. General models of protein evolution help to determine the baseline expectations for evolution of sequences, and these models have been extensively useful in sequence analysis as well as for the computer simulation of artificial sequence data sets. We have developed a new method of simulating multi-domain protein evolution, including fusions of domains, insertion, and deletion. It has been observed via the simulation test that the success rates achieved by the proposed predictor are remarkably high. For the convenience of the most experimental scientists, a user-friendly web server has been established at http://jci-bioinfo.cn/domainevo, by which users can easily get their desired results without having to go through the detailed mathematics. Through the simulation results of this website, users can predict the evolution trend of the protein domain architecture.

4.
Methods Mol Biol ; 1910: 469-504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278674

RESUMO

This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution.


Assuntos
Evolução Molecular , Domínios Proteicos/genética , Proteínas/genética , Evolução Biológica , Bases de Dados Genéticas , Genoma , Filogenia , Proteínas/química
5.
Mol Biol Evol ; 33(5): 1219-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769031

RESUMO

The functions of proteins are usually determined by domains, and the sequential order in which domains are connected to make up a protein chain is known as the domain architecture. Here, we constructed evolutionary networks of protein domain architectures in species from three major life lineages (bacteria, fungi, and metazoans) by connecting any two architectures between which an evolutionary event could be inferred by a model that assumes maximum parsimony. We found that proteins with domain architectures with a higher level of evolvability, indicated by a greater number of connections in the evolutionary network, are present in a wider range of species. However, these proteins tend to be less essential to the organism, are duplicated more often during evolution, have more isoforms, and, intriguingly, tend to be associated with functional categories important for organismal adaptation. These results reveal the presence, in many genomes, of genes coding for a core set of nonessential proteins that have a highly evolvable domain architecture and thus a repertoire of genetic materials accessible for organismal adaptation.


Assuntos
Evolução Molecular , Proteínas/genética , Animais , Simulação por Computador , Genoma , Humanos , Filogenia , Domínios Proteicos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
6.
Biol Lett ; 9(4): 20130268, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23760167

RESUMO

Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...