Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.826
Filtrar
1.
Autophagy ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113571

RESUMO

Aging is often accompanied by a decline in proteostasis, manifested as an increased propensity for misfolded protein aggregates, which are prevented by protein quality control systems, such as the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy. Although the role of the UPS and autophagy in slowing age-induced proteostasis decline has been elucidated, limited information is available on how these pathways can be activated in a collaborative manner to delay proteostasis-associated aging. Here, we show that activation of the UPS via the pharmacological inhibition of USP14 (ubiquitin specific peptidase 14) using IU1 improves proteostasis and autophagy decline caused by aging or proteostatic stress in Drosophila and human cells. Treatment with IU1 not only alleviated the aggregation of polyubiquitinated proteins in aging Drosophila flight muscles but also extended the fly lifespan with enhanced locomotive activity via simultaneous activation of the UPS and autophagy. Interestingly, the effect of this drug disappeared when proteasomal activity was inhibited, but was evident upon proteostasis disruption by foxo mutation. Overall, our findings shed light on potential strategies to efficiently ameliorate age-associated pathologies associated with perturbed proteostasis.

2.
Mol Syst Biol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103653

RESUMO

Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.

3.
Talanta ; 279: 126589, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39116730

RESUMO

In this study, we employed the dithiothreitol-based protein equalisation technique and analytical proteomics to better understand myeloma diseases by comparing the proteomes of pellets and supernatants formed upon application of DTT on serum samples. The number of unique proteins found in pellets was 252 for healthy individuals and 223 for multiple myeloma patients. The comparison of these proteomes showed 97 dysregulated proteins. The unique proteins found for supernatants were 264 for healthy individuals and 235 for multiple myeloma patients. The comparison of these proteomes showed 87 dysregulated proteins. The analytical proteomic comparison of both groups of dysregulated proteins is translated into parallel dysregulated pathways, including chaperone-mediated autophagy and protein folding, addressing potential therapeutic interventions. Future research endeavours in personalised medicine should prioritize refining analytical proteomic methodologies using serum dithiothreitol-based protein equalisation to explore innovative therapeutic strategies. We highlight the advanced insights gained from this analytical strategy in studying multiple myeloma, emphasising its complex nature and the critical role of personalised, targeted analytical techniques in enhancing therapeutic efficacy in personalised medicine.

4.
J Neurochem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115041

RESUMO

The accumulation of ß-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and ß-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.

5.
J Mol Biol ; : 168740, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39122169

RESUMO

Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity. Here, we have investigated the latency control and activation of human HSF1 by HSP70 and misfolded proteins. Purified oligomeric HSF1-HSP70 (HSPA1A) complexes exhibited basal DNA binding activity that was inhibited by increasing the levels of HSP70 and, importantly, misfolded proteins reverted the inhibitory effect. Using site-specific UV photo-crosslinking, we monitored HSP70-HSF1 complexes in HEK293T cells. While HSF1 was bound by the substrate binding domain of HSP70 in unstressed cells, activation of HSF1 by heat shock as well as by inducing the misfolding of newly synthesized proteins resulted in release of HSF1 from the chaperone. Taken our results together, we conclude that latent HSF1 populate dynamic complexes with HSP70, which are sensitive to increased levels of misfolded proteins that compete for binding to the HSP70 substrate binding domain. Thus, human HSF1 is activated by various stress conditions that all titrate available HSP70.

6.
Curr Biol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39096907

RESUMO

Insufficient sleep is a global problem with serious consequences for cognition and mental health.1 Synapses play a central role in many aspects of cognition, including the crucial function of memory consolidation during sleep.2 Interference with the normal expression or function of synapse proteins is a cause of cognitive, mood, and other behavioral problems in over 130 brain disorders.3 Sleep deprivation (SD) has also been reported to alter synapse protein composition and synapse number, although with conflicting results.4,5,6,7 In our study, we conducted synaptome mapping of excitatory synapses in 125 regions of the mouse brain and found that sleep deprivation selectively reduces synapse diversity in the cortex and in the CA1 region of the hippocampus. Sleep deprivation targeted specific types and subtypes of excitatory synapses while maintaining total synapse density (synapse number/area). Synapse subtypes with longer protein lifetimes exhibited resilience to sleep deprivation, similar to observations in aging and genetic perturbations. Moreover, the altered synaptome architecture affected the responses to neural oscillations, suggesting that sleep plays a vital role in preserving cognitive function by maintaining the brain's synaptome architecture.

7.
Mol Cell Biol ; : 1-14, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099191

RESUMO

N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.

8.
FEBS J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949989

RESUMO

Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.

9.
Plant J ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961633

RESUMO

Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.

10.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955187

RESUMO

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autoimunidade , Resistência à Doença , Fusarium , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fusarium/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Proteínas de Transporte
11.
Proc Natl Acad Sci U S A ; 121(29): e2313370121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985769

RESUMO

Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.


Assuntos
Proteínas de Choque Térmico HSP70 , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Histona Desmetilases com o Domínio Jumonji , Proteostase , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteostase/fisiologia , Retroalimentação Fisiológica , Adaptação Fisiológica , Células HEK293 , Estresse Proteotóxico
12.
Phytomedicine ; 132: 155862, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39032280

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, posing a significant global health concern due to its increasing prevalence. Insulin resistance (IR) plays a major role in the development of T2DM and is often linked to factors such as obesity, physical inactivity, and a sedentary lifestyle. Recently, there has been growing interest in exploring the potential of natural products for improving insulin sensitivity and glucose metabolism. Among these, Cynomorium songaricum Rupr., an edible parasitic plant, has shown promising antidiabetic effects. However, research on its beneficial effects on IR is still nascent. Therefore, this study aims to investigate the application of a Cynomorium songaricum flavonoid-enriched fraction (CSF) in the treatment of IR in T2DM, along with elucidating the chemical and biochemical mechanisms involved. METHOD: First, UHPLC/ESI-LTQ-Orbitrap-MS was utilized to perform a chemical profiling of CSF. Subsequently, glycogen synthesis, gluconeogenesis and glucose consumption assays were conducted on HepG2 cells with a high glucose high insulin-induced IR model to illustrate the favorable impacts of CSF on IR. Then, an innovative network pharmacology analysis was executed to predict the potential chemical components and hub genes contributing to CSF's protective effect against IR. To further elucidate molecular interactions, molecular docking studies were performed, focusing on the binding interactions between active constituents of CSF and crucial targets. Additionally, an RNA-sequencing assay was employed to uncover the underlying biochemical signaling pathway responsible for CSF's beneficial effects. To validate these findings, western blot and qPCR assays were employed to verify the pathways related to IR and the potential signaling cascades leading to the amelioration of IR. RESULTS: The UHPLC/ESI-LTQ-Orbitrap-MS analysis successfully identified a total of thirty-six flavonoids derived from CSF. Moreover, CSF was shown to significantly improve glycogen synthesis and glucose consumption as well as inhibit gluconeogenesis in HepG2 cells of IR. An innovative network pharmacology analysis unveiled key hub genes-AKT1 and PI3K-integral to metabolic syndrome-related signaling pathways, which contributed to the favorable impact of CSF against IR. Noteworthy active ingredients including quercetin, ellagic acid and naringenin were identified as potential contributors to these effects. The results of western blot and qPCR assays provided compelling evidence that CSF improved insulin sensitivity by modulating the PI3K-Akt signaling pathway. Subsequent RNA-sequencing analysis, in tandem with western blot assays, delved deeper into the potential mechanisms underlying CSF's advantageous effects against IR, potentially associated with the enhancement of endoplasmic reticulum (ER) proteostasis. CONCLUSION: CSF exhibited a remarkable ability to enhance insulin sensitivity in the IR model of HepG2 cells. This was evident through enhancements in glycogen synthesis and glucose consumption, along with its inhibitory impact on gluconeogenesis. Furthermore, CSF demonstrated an improvement in the insulin-mediated PI3K-Akt signaling pathway. The potential active constituents were identified as quercetin, ellagic acid and naringenin. The underlying biochemical mechanisms responsible for CSF's beneficial effects against IR were closely linked to its capacity to mitigate ER stress, thereby offering a comprehensive understanding of its protective action.

13.
Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959891

RESUMO

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.

14.
Redox Biol ; 75: 103263, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39053266

RESUMO

The endoplasmic reticulum (ER) regulates protein folding and maintains proteostasis in cells. We observed that the ER transcriptome is impaired during chronic reductive stress (RS) in cardiomyocytes. Here, we hypothesized that a prolonged moderate treadmill exercise mitigates the RS-induced ER dysfunction and cardiac remodeling in cardiac-specific constitutively active Nrf2 mice (CaNrf2-TG). RNA sequencing showed notable alterations in the ER transcriptome of TG hearts at 4, 12, and 24 weeks (16, 28, and 35 genes, respectively). Notably, the downregulation of ER genes was significant at 12 weeks, and further pronounced at 24 weeks, at which the cardiac pathology is evident. We also observed increased levels of ubiquitinated proteins in CaNrf2-TG hearts across all ages, along with VCP, a marker of ERAD function, at 24 weeks. These findings indicate that constitutive Nrf2 activation and RS impair protein-folding activity and augments ERAD function over time. Exercise intervention for 20 weeks (beginning at 6 weeks of age), reduced cardiomyocyte hypertrophy (from 448 µm2 to 280 µm2) in TG mice, through adaptive remodeling, and preserved the cardiac function. However, while exercise did not influence antioxidants or ER stress protein levels, it significantly improved ERAD function and autophagy flux (LC-I to LC-II) in the TG-EXE hearts. Collectively, our findings underscore the prophylactic potential of exercise in mitigating RS-associated pathology, highlighting its essential role in maintaining cellular proteostasis through ER-independent mechanisms.

15.
J Mol Neurosci ; 74(3): 62, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958788

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aß) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Ferroptose , Metabolismo dos Lipídeos , Animais , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Ferro/metabolismo
16.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063131

RESUMO

The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.


Assuntos
Autofagia , Diferenciação Celular , Células-Tronco Embrionárias Humanas , Proteostase , Humanos , Autofagia/genética , Células-Tronco Embrionárias Humanas/metabolismo , Diferenciação Celular/genética , Endopeptidases/metabolismo , Endopeptidases/genética , Técnicas de Silenciamento de Genes
17.
Aging Cell ; : e14243, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049179

RESUMO

Presbycusis is a prevalent condition in older adults characterized by the progressive loss of hearing due to age-related changes in the cochlea, the auditory portion of the inner ear. Many adults also struggle with understanding speech in noise despite having normal auditory thresholds, a condition termed "hidden" hearing loss because it evades standard audiological assessments. Examination of animal models and postmortem human tissue suggests that hidden hearing loss is also associated with age-related changes in the cochlea and may, therefore, precede overt age-related hearing loss. Nevertheless, the pathological mechanisms underlying hidden hearing loss are not understood, which hinders the development of diagnostic biomarkers and effective treatments for age-related hearing loss. To fill these gaps in knowledge, we leveraged a combination of tools, including transcriptomic profiling and morphological and functional assessments, to identify these processes and examine the transition from hidden to overt hearing loss. As a novel approach, we took advantage of a recently characterized model of hidden hearing loss: Kcnt1/2 double knockout mice. Using this model, we find that even before observable morphological pathology, hidden hearing loss is associated with significant alteration in several processes, notably proteostasis, in the cochlear sensorineural structures, and increased susceptibility to overt hearing loss in response to noise exposure and aging. Our findings provide the first insight into the pathophysiology associated with the earliest and, therefore, most treatable stages of hearing loss and provide critical insight directing future investigation of pharmaceutical strategies to slow and possibly prevent overt age-related hearing loss.

18.
Autophagy ; : 1-7, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39007889

RESUMO

Professor Richard (Rick) Morimoto is the Bill and Gayle Cook Professor of Biology and Director of the Rice Institute for Biomedical Research at Northwestern University. He has made foundational contributions to our understanding of how cells respond to various stresses, and the role played in those responses by chaperones. Working across a variety of experimental models, from C. elegans to human neuronal cells, he has identified a number of important molecular components that sense and respond to stress, and he has dissected how stress alters cellular and organismal physiology. Together with colleagues, Professor Morimoto has coined the term "proteostasis" to signify the homeostatic control of protein expression and function, and in recent years he has been one of the leaders of a consortium trying to understand proteostasis in healthy and disease states. I took the opportunity to talk with Professor Morimoto about proteostasis in general, the aims of the consortium, and how autophagy is playing an important role in their research effort.

19.
Protein Sci ; 33(8): e5123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39041895

RESUMO

Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is the most common inborn error of sulfur amino acid metabolism. Recent work suggests that missense pathogenic mutations-regardless of their topology-cause instability of the C-terminal regulatory domain, which likely translates into CBS misfolding, impaired assembly, and loss of function. However, it is unknown how instability of the regulatory domain translates into cellular CBS turnover and which degradation pathways are involved in CBS proteostasis. Here, we developed a human HEK293-based cellular model lacking intrinsic CBS and stably overexpressing wild-type (WT) CBS or its 10 most common missense HCU mutants. We found that HCU mutants, except the I278T variant, expressed similarly or better than CBS WT, with some of them showing impaired oligomerization, activity and response to allosteric activator S-adenosylmethionine. Cellular stability of all HCU mutants, except P49L and A114V, was significantly lower than the stability of CBS WT, suggesting their increased degradation. Ubiquitination analysis of CBS WT and two representative CBS mutants (T191M and I278T) showed that proteasomal degradation is the major pathway for CBS disposal, with a minor involvement of lysosomal-autophagic and endoplasmic reticulum-associated degradation (ERAD) pathways for HCU mutants. Proteasomal inhibition significantly increased the half-life and activity of T191M and I278T CBS mutants. Lysosomal and ERAD inhibition had only a minor impact on CBS turnover, but ERAD inhibition rescued the activity of T191M and I278T CBS mutants similarly as proteasomal inhibition. In conclusion, the present study provides new insights into proteostasis of CBS in HCU.


Assuntos
Cistationina beta-Sintase , Homocistinúria , Mutação de Sentido Incorreto , Proteólise , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/química , Humanos , Homocistinúria/genética , Homocistinúria/metabolismo , Células HEK293 , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitinação , Degradação Associada com o Retículo Endoplasmático
20.
bioRxiv ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38948718

RESUMO

Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...