Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(6): 1849-1874, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38584391

RESUMO

The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Edição de Genes , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
2.
Cell Mol Immunol ; 21(4): 315-331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443448

RESUMO

Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Células Matadoras Naturais , Imunoterapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Microambiente Tumoral
3.
ACS Nano ; 17(10): 9039-9048, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37154259

RESUMO

Cell membrane receptors regulate cellular responses through sensing extracellular environmental signals and subsequently transducing them. Receptor engineering provides a means of directing cells to react to a designated external cue and exert programmed functions. However, rational design and precise modulation of receptor signaling activity remain challenging. Here, we report an aptamer-based signal transduction system and its applications in controlling and customizing the functions of engineered receptors. A previously reported membrane receptor-aptamer pair was used to design a synthetic receptor system that transduces cell signaling depending on exogenous aptamer input. To eliminate the cross-reactivity of the receptor with its native ligand, the extracellular domain of the receptor was engineered to ensure that the receptor was solely activated by the DNA aptamer. The present system features tunability in the signaling output level using aptamer ligands with different receptor dimerization propensities. In addition, the functional programmability of DNA aptamers enables the modular sensing of extracellular molecules without the need for genetic engineering of the receptor.


Assuntos
Aptâmeros de Nucleotídeos , Receptores Artificiais , Aptâmeros de Nucleotídeos/genética , Receptores de Superfície Celular , Ligantes , Transdução de Sinais/fisiologia
4.
Mol Ther ; 31(3): 631-646, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463401

RESUMO

Human mucosal-associated invariant T (MAIT) cells are characterized by their expression of an invariant TCR α chain Vα7.2-Jα33/Jα20/Jα12 paired with a restricted TCR ß chain. MAIT cells recognize microbial peptides presented by the highly conserved MHC class I-like molecule MR1 and bridge the innate and acquired immune systems to mediate augmented immune responses. Upon activation, MAIT cells rapidly proliferate, produce a variety of cytokines and cytotoxic molecules, and trigger efficient antitumor immunity. Administration of a representative MAIT cell ligand 5-OP-RU effectively activates MAIT cells and enhances their antitumor capacity. In this review, we introduce MAIT cell biology and their importance in antitumor immunity, summarize the current development of peripheral blood mononuclear cell-derived and stem cell-derived MAIT cell products for cancer treatment, and discuss the potential of genetic engineering of MAIT cells for off-the-shelf cancer immunotherapy.


Assuntos
Células T Invariantes Associadas à Mucosa , Neoplasias , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Leucócitos Mononucleares/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo
5.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
6.
Curr Opin Syst Biol ; 282021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34527831

RESUMO

Advances in synthetic biology have provided genetic tools to reprogram cells to obtain desired cellular functions that include tools to enable the customization of cells to sense an extracellular signal and respond with a desired output. These include a variety of engineered receptors capable of transmembrane signaling that transmit information from outside of the cell to inside when specific ligands bind to them. Recent advances in synthetic receptor engineering have enabled the reprogramming of cell and tissue behavior, controlling cell fate decisions, and providing new vehicles for therapeutic delivery.

7.
Cell Rep Med ; 2(8): 100374, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467251

RESUMO

Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable in vivo function still poses a major challenge and limits broader and more successful application of this "living drug." Here, by studying 51 different TCRs, we show that conventional genetic engineering by viral transduction leads to variable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration. In contrast, CRISPR/Cas9-mediated TCR replacement enables defined, targeted TCR transgene insertion into the TCR gene locus. Thereby, T cell products display more homogeneous TCR expression similar to physiological T cells. Importantly, increased T cell product homogeneity after targeted TCR gene editing correlates with predictable in vivo T cell responses, which represents a crucial aspect for clinical application in adoptive T cell immunotherapy.


Assuntos
Edição de Genes , Genes Codificadores dos Receptores de Linfócitos T , Imunoterapia , Linfócitos T/imunologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Transcrição Gênica
8.
Methods Mol Biol ; 2312: 59-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228284

RESUMO

Antibodies have been attracting attention as therapeutic tools owing to their high affinity and specificity. To develop potent antibodies, affinity maturation, epitope regulation, and using target antigens in native form are pivotal requirements. Here we describe a method to conduct epitope-directed affinity maturation of antibodies using engineered mammalian cells. This method utilizes protein chimeras that transduce cell death signaling in response to antibody binding. As the competition of antibody binding inhibits the cell death signaling, only affinity-matured antibodies retaining the same epitope as an original one can be selected using cell survival as readout.


Assuntos
Engenharia Celular , Epitopos , Anticorpos de Cadeia Única/genética , Afinidade de Anticorpos , Morte Celular , Células Cultivadas , Biblioteca Gênica , Vetores Genéticos , Transdução de Sinais , Anticorpos de Cadeia Única/metabolismo , Transdução Genética
9.
Vaccines (Basel) ; 8(4)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287413

RESUMO

Recent developments in gene engineering technologies have drastically improved the therapeutic treatment options for cancer patients. The use of effective chimeric antigen receptor T (CAR-T) cells and recombinant T cell receptor engineered T (rTCR-T) cells has entered the clinic for treatment of hematological malignancies with promising results. However, further fine-tuning, to improve functionality and safety, is necessary to apply these strategies for the treatment of solid tumors. The immunosuppressive microenvironment, the surrounding stroma, and the tumor heterogeneity often results in poor T cell reactivity, functionality, and a diminished infiltration rates, hampering the efficacy of the treatment. The focus of this review is on recent advances in rTCR-T cell therapy, to improve both functionality and safety, for potential treatment of solid tumors and provides an overview of ongoing clinical trials. Besides selection of the appropriate tumor associated antigen, efficient delivery of an optimized recombinant TCR transgene into the T cells, in combination with gene editing techniques eliminating the endogenous TCR expression and disrupting specific inhibitory pathways could improve adoptively transferred T cells. Armoring the rTCR-T cells with specific cytokines and/or chemokines and their receptors, or targeting the tumor stroma, can increase the infiltration rate of the immune cells within the solid tumors. On the other hand, clinical "off-tumor/on-target" toxicities are still a major potential risk and can lead to severe adverse events. Incorporation of safety switches in rTCR-T cells can guarantee additional safety. Recent clinical trials provide encouraging data and emphasize the relevance of gene therapy and gene editing tools for potential treatment of solid tumors.

10.
J Leukoc Biol ; 108(4): 1067-1079, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32620049

RESUMO

Innovative immunotherapies based on immune checkpoint targeting antibodies and engineered T cells are transforming the way we approach cancer treatment. However, although these T cell centered strategies result in marked and durable responses in patients across many different tumor types, they provide therapeutic efficacy only in a proportion of patients. A major challenge of immuno-oncology is thereby to identify mechanisms responsible for resistance to cancer immunotherapy in order to overcome them via adapted strategies that will ultimately improve intrinsic efficacy and response rates. Here, we focus on the barriers that restrain the trafficking of chimeric antigen receptor (CAR)-expressing T cells to solid tumors. Upon infusion, CAR T cells need to home into malignant sites, navigate within complex tumor environments, form productive interactions with cancer cells, deliver their cytotoxic activities, and finally persist. We review the accumulating evidence that the microenvironment of solid tumors contains multiple obstacles that hinder CAR T cells in the dynamic steps underlying their trafficking. We focus on how these hurdles may in part account for the failure of CAR T cell clinical trials in human carcinomas. Given the engineered nature of CAR T cells and possibilities to modify the tumor environment, there are ample opportunities to augment CAR T cell ability to efficiently find and combat tumors. We present some of these strategies, which represent a dynamic field of research with high potential for clinical applicability.


Assuntos
Antígenos de Neoplasias/imunologia , Movimento Celular/imunologia , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/patologia
11.
Synth Biol (Oxf) ; 5(1): ysaa017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392392

RESUMO

Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood. In general, it would be useful to understand how receptor design choices influence performance characteristics. In this study, we examined the modular extracellular sensor architecture (MESA) and systematically evaluated previously unexamined design choices, yielding substantially improved receptors. A key finding that might extend to other receptor systems is that the choice of transmembrane domain (TMD) is important for generating high-performing receptors. To provide mechanistic insights, we adopted and employed a Förster resonance energy transfer-based assay to elucidate how TMDs affect receptor complex formation and connected these observations to functional performance. To build further insight into these phenomena, we developed a library of new MESA receptors that sense an expanded set of ligands. Based upon these explorations, we conclude that TMDs affect signaling primarily by modulating intracellular domain geometry. Finally, to guide the design of future receptors, we propose general principles for linking design choices to biophysical mechanisms and performance characteristics.

12.
Biotechnol J ; 14(1): e1800350, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30171736

RESUMO

As intracellular antibodies (intrabodies) are highly promising tools for drug discovery, an innovative antibody screening platform in mammalian cells was previously developed by a single-chain Fv (scFv)-c-kit growth sensor, which successfully selected rabies nucleoprotein and phosphoprotein-specific intrabodies from a synthetic scFv library. Since the scFv-c-kit growth sensor releases a growth signal after forming oligomers due to binding to an oligomeric antigen, it is critical to use a library which does not contain self-oligomeric scFvs to avoid the off-target signal of the growth sensor. Here, a novel method to eliminate self-oligomeric scFvs directly in the cytoplasm of mammalian cells is presented. A suicide switch by fusing an scFv with a cell-death signaling domain to eliminate scFv oligomers is developed. It is found that among four cell-death signaling domains, a suicide switch by fusing scFv with Fas-associated death domain (FADD) can selectively reduce oligomeric scFvs. Furthermore, the library after eliminating scFv oligomers results in higher efficiency in the intrabody selection platform with a growth sensor. Collectively, the scFv-FADD suicide switch can be applied to eliminate oligomeric scFvs from a library, which can consequently improve the quality of intracellular scFv libraries and accelerate the discovery of intrabodies in the future.


Assuntos
Biblioteca de Peptídeos , Animais , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
13.
ACS Synth Biol ; 7(2): 696-705, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29366326

RESUMO

Directed evolution of membrane receptors is challenging as the evolved receptor must not only accommodate a non-native ligand, but also maintain the ability to transduce the detection of the new ligand to any associated intracellular components. The G-protein coupled receptor (GPCR) superfamily is the largest group of membrane receptors. As members of the GPCR family detect a wide range of ligands, GPCRs are an incredibly useful starting point for directed evolution of user-defined analytical tools and diagnostics. The aim of this study was to determine if directed evolution of the yeast Ste2p GPCR, which natively detects the α-factor peptide, could yield a GPCR that detects Cystatin C, a human peptide biomarker. We demonstrate a generalizable approach for evolving Ste2p to detect peptide sequences. Because the target peptide differs significantly from α-factor, a single evolutionary step was infeasible. We turned to a substrate walking approach and evolved receptors for a series of chimeric intermediates with increasing similarity to the biomarker. We validate our previous model as a tool for designing optimal chimeric peptide steps. Finally, we demonstrate the clinical utility of yeast-based biosensors by showing specific activation by a C-terminally amidated Cystatin C peptide in commercially sourced human urine. To our knowledge, this is the first directed evolution of a peptide GPCR.


Assuntos
Cistatina C/análise , Evolução Molecular Direcionada/métodos , Peptídeos , Engenharia de Proteínas/métodos , Receptores de Fator de Acasalamento , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Biomarcadores/química , Humanos , Peptídeos/química , Peptídeos/genética , Receptores de Fator de Acasalamento/química , Receptores de Fator de Acasalamento/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
14.
Front Immunol ; 8: 1564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187853

RESUMO

Redirecting CD8 T cell immunity with self/tumor-specific affinity-matured T cell receptors (TCRs) is a promising approach for clinical adoptive T cell therapy, with the aim to improve treatment efficacy. Despite numerous functional-based studies, little is known about the characteristics of TCR signaling (i.e., intensity, duration, and amplification) and the regulatory mechanisms underlying optimal therapeutic T cell responses. Using a panel of human SUP-T1 and primary CD8 T cells engineered with incremental affinity TCRs against the cancer-testis antigen NY-ESO-1, we found that upon activation, T cells with optimal-affinity TCRs generated intense and sustained proximal (CD3ζ, LCK) signals associated with distal (ERK1/2) amplification-gain and increased function. In contrast, in T cells with very high affinity TCRs, signal initiation was rapid and strong yet only transient, resulting in poor MAPK activation and low proliferation potential even at high antigen stimulation dose. Under resting conditions, the levels of surface TCR/CD3ε, CD8ß, and CD28 expression and of CD3ζ phosphorylation were significantly reduced in those hyporesponsive cells, suggesting the presence of TCR affinity-related activation thresholds. We also show that SHP phosphatases were involved along the TCR affinity gradient, but displayed spatially distinct regulatory roles. While PTPN6/SHP-1 phosphatase activity controlled TCR signaling initiation and subsequent amplification by counteracting CD3ζ and ERK1/2 phosphorylation, PTPN11/SHP-2 augmented MAPK activation without affecting proximal TCR signaling. Together, our findings indicate that optimal TCR signaling can be finely tuned by TCR affinity-dependent SHP-1 and SHP-2 activity, and this may readily be determined at the TCR/CD3 complex level. We propose that these TCR affinity-associated regulations represent potential protective mechanisms preventing high affinity TCR-mediated autoimmune diseases.

15.
J Physiol ; 595(20): 6517-6539, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28815591

RESUMO

KEY POINTS: The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. ABSTRACT: During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had diminished gating modulation. GluA2-C528L destabilized the AMPAR-CNIH3 complex but stabilized the AMPAR-Stg complex, with overall loss of function in gating modulation. Furthermore, loss-of-function mutations in this TMD region cancelled the effects of a gain-of-function Stg carrying mutation in its extracellular loop, demonstrating that both the extracellular and the TMD elements contribute independently to gating modulation. The elements of AMPAR functionally recruited by auxiliary subunits are, therefore, located not only in the extracellular domains but also in the lipid accessible surface of the AMPAR. The TMD surface we defined is a potential target for auxiliary subunit-specific compounds, because engineering of this hotspot induces opposing functional outcomes by Stg and CNIH3. The collection of mutant-phenotype mapping provides a framework for engineering AMPAR gating using auxiliary subunits.


Assuntos
Canais de Cálcio/fisiologia , Receptores de AMPA/fisiologia , Canais de Cálcio/genética , Linhagem Celular , Membrana Celular , Humanos , Ativação do Canal Iônico , Mutação , Domínios Proteicos , Receptores de AMPA/genética
16.
ACS Synth Biol ; 6(11): 2042-2055, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28771312

RESUMO

Engineered cell-based therapies comprise a promising, emerging biomedical technology. Broad utilization of this strategy will require new approaches for implementing sophisticated functional programs, such as sensing and responding to the environment in a defined fashion. Toward this goal, we investigated whether our self-contained receptor and signal transduction system (MESA) could be multiplexed to evaluate extracellular cues, with a focus on elucidating principles governing the integration of such engineered components. We first developed a set of hybrid promoters that exhibited AND gate activation by two transcription factors. We then evaluated these promoters when paired with two MESA receptors and various ligand combinations. Unexpectedly, although the multiplexed system exhibited distinct responses to ligands applied individually and in combination, the same synergy was not observed as when promoters were characterized with soluble transcription factors. Therefore, we developed a mechanistic computational model leveraging these observations, to both improve our understanding of how the receptors and promoters interface and to guide the design and implementation of future systems. Notably, the model explicitly accounts for the impact of intercellular variation on system characterization and performance. Model analysis identified key factors that affect the current receptors and promoters, and enabled an in silico exploration of potential modifications that inform the design of improved logic gates and their robustness to intercellular variation. Ultimately, this quantitative design-driven approach may guide the use and multiplexing of synthetic receptors for diverse custom biological functions beyond the case study considered here.


Assuntos
Monitoramento Ambiental/métodos , Engenharia Genética/métodos , Modelos Biológicos , Receptores de Superfície Celular , Transdução de Sinais , Células HEK293 , Humanos , Ligantes , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
17.
ACS Synth Biol ; 6(7): 1315-1326, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28372360

RESUMO

Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-existing compound libraries could reveal small molecules that inhibit stimulus-perception by virulence-modulating receptors, reduce signal output from essential receptors or identify artificial stimulatory ligands for novel SHKs that are involved in virulence. Those small molecules could possess desirable therapeutic properties to combat MDR. We propose that a modular screening platform in which the periplasmic domain of the targeted receptors are fused to the cytoplasmic domain of a well-characterized receptor that governs fluorescence reporter genes could be employed to rapidly screen currently existing small molecule libraries. Here, we have examined two previously created Tar-EnvZ chimeras and a novel NarX-EnvZ chimera. We demonstrate that it is possible to couple periplasmic stimulus-perceiving domains to an invariable cytoplasmic domain that governs transcription of a dynamic fluorescent reporter system. Furthermore, we show that aromatic tuning, or repositioning the aromatic residues at the end of the second transmembrane helix (TM2), modulates baseline signal output from the tested chimeras and even restores output from a nonfunctional NarX-EnvZ chimera. Finally, we observe an inverse correlation between baseline signal output and the degree of response to cognate stimuli. In summary, we propose that the platform described here, a fluorescent Escherichia coli reporter strain with plasmid-based expression of the aromatically tuned chimeric receptors, represents a synthetic biology approach to rapidly screen pre-existing compound libraries for receptor-modulating activities.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
18.
J Biosci Bioeng ; 124(1): 125-132, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28319021

RESUMO

Intracellular antibodies (intrabodies) are expected to function as therapeutics as well as tools for elucidating in vivo function of proteins. In this study, we propose a novel intrabody selection method in the cytosol of mammalian cells by utilizing a growth signal, induced by the interaction of the target antigen and an scFv-c-kit growth sensor. Here, we challenge this method to select specific intrabodies against rabies virus nucleoprotein (RV-N) for the first time. As a result, we successfully select antigen-specific intrabodies from a naïve synthetic library using phage panning followed by our growth sensor-based intracellular selection method, demonstrating the feasibility of the method. Additionally, we succeed in improving the response of the growth sensor by re-engineering the linker region of its construction. Collectively, the described selection method utilizing a growth sensor may become a highly efficient platform for selection of functional intrabodies in the future.


Assuntos
Anticorpos/genética , Citosol/metabolismo , Engenharia de Proteínas/métodos , Animais , Anticorpos/imunologia , Nucleoproteínas/imunologia , Biblioteca de Peptídeos , Vírus da Raiva
19.
J Biol Eng ; 9: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000034

RESUMO

Two-component signaling circuits (TCSs) govern the majority of environmental, pathogenic and industrial processes undertaken by bacteria. Therefore, controlling signal output from these circuits in a stimulus-independent manner is of central importance to synthetic microbiologists. Aromatic tuning, or repositioning the aromatic residues commonly found at the cytoplasmic end of the final TM helix has been shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor (EnvZ) of Escherichia coli. Aromatic residues are found in a similar location within other bacterial membrane-spanning receptors, suggesting that aromatic tuning could be harnessed for a wide-range of applications. Here, a brief synopsis of the data underpinning aromatic tuning, the initial successes with the method and the inherent advantages over those previously employed for modulating TCS signal output are presented.

20.
ACS Synth Biol ; 3(12): 892-902, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24611683

RESUMO

Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.


Assuntos
Receptores de Superfície Celular , Transdução de Sinais , Biologia Sintética/métodos , Técnicas Biossensoriais , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...