Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Pflugers Arch ; 476(7): 1023-1039, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38581527

RESUMO

All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.


Assuntos
Tamanho Celular , Canais Iônicos , Mecanotransdução Celular , Humanos , Canais Iônicos/metabolismo , Animais , Mecanotransdução Celular/fisiologia , Cálcio/metabolismo
2.
Fish Physiol Biochem ; 50(4): 1341-1352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38647979

RESUMO

Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 µM) and forskolin (Forsk, 20 µM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by ß-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.


Assuntos
Epinefrina , Eritrócitos , Lampreias , Potencial da Membrana Mitocondrial , Pressão Osmótica , Espécies Reativas de Oxigênio , Animais , Eritrócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Lampreias/fisiologia , Epinefrina/farmacologia , Colforsina/farmacologia , Osmorregulação/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
3.
J Physiol Sci ; 74(1): 3, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238667

RESUMO

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.


Assuntos
Canais Iônicos , Proteínas de Membrana , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Ânions/metabolismo , Tamanho Celular
4.
Neurobiol Dis ; 190: 106388, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141856

RESUMO

BACKGROUND: MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS: We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS: We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION: Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.


Assuntos
Doenças Desmielinizantes , Megalencefalia , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Doenças Desmielinizantes/patologia , Mutação/genética , Retículo Endoplasmático/metabolismo , Megalencefalia/metabolismo
5.
J Cell Physiol ; 238(9): 2120-2134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431808

RESUMO

Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.


Assuntos
Canais de Cálcio , Glioblastoma , Humanos , Cálcio , Movimento Celular , Tamanho Celular , Glioblastoma/patologia , Canais de Cálcio/metabolismo
6.
Cells ; 12(13)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443757

RESUMO

We assessed interactions between the astrocytic volume-regulated anion channel (VRAC) and aquaporin 4 (AQP4) in the supraoptic nucleus (SON). Acute SON slices and cultures of hypothalamic astrocytes prepared from rats received hyposmotic challenge (HOC) with/without VRAC or AQP4 blockers. In acute slices, HOC caused an early decrease with a late rebound in the neuronal firing rate of vasopressin neurons, which required activity of astrocytic AQP4 and VRAC. HOC also caused a persistent decrease in the excitatory postsynaptic current frequency, supported by VRAC and AQP4 activity in early HOC; late HOC required only VRAC activity. These events were associated with the dynamics of glial fibrillary acidic protein (GFAP) filaments, the late retraction of which was mediated by VRAC activity; this activity also mediated an HOC-evoked early increase in AQP4 expression and late subside in GFAP-AQP4 colocalization. AQP4 activity supported an early HOC-evoked increase in VRAC levels and its colocalization with GFAP. In cultured astrocytes, late HOC augmented VRAC currents, the activation of which depended on AQP4 pre-HOC/HOC activity. HOC caused an early increase in VRAC expression followed by a late rebound, requiring AQP4 and VRAC, or only AQP4 activity, respectively. Astrocytic swelling in early HOC depended on AQP4 activity, and so did the early extension of GFAP filaments. VRAC and AQP4 activity supported late regulatory volume decrease, the retraction of GFAP filaments, and subside in GFAP-VRAC colocalization. Taken together, astrocytic morphological plasticity relies on the coordinated activities of VRAC and AQP4, which are mutually regulated in the astrocytic mediation of HOC-evoked modulation of vasopressin neuronal activity.


Assuntos
Aquaporina 4 , Núcleo Supraóptico , Ratos , Animais , Aquaporina 4/metabolismo , Núcleo Supraóptico/metabolismo , Astrócitos/metabolismo , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Ânions/metabolismo , Neurônios/metabolismo
7.
Cell Calcium ; 111: 102715, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933289

RESUMO

Cell swelling as a result of hypotonic stress is counteracted in mammalian cells by a process called regulatory volume decrease (RVD). We have recently discovered that RVD of human keratinocytes requires the LRRC8 volume-regulated anion channel (VRAC) and that Ca2+ exerts a modulatory function on RVD. However, the ion channel that is responsible for Ca2+ influx remains unknown. We investigated in this study whether the Ca2+-permeable TRPV4 ion channel, which functions as cell volume sensor in many cell types, may be involved in cell volume regulation during hypotonic stress response of human keratinocytes. We interfered with TRPV4 function in two human keratinocyte cell lines (HaCaT and NHEK-E6/E7) by using two TRPV4-specific inhibitors (RN1734 and GSK2193874), and by creating a CRISPR/Cas9-mediated genetic TRPV4-/- knockout in HaCaT cells. We employed electrophysiological patch clamp analysis, fluorescence-based Ca2+ imaging and cell volume measurements to determine the functional importance of TRPV4. We could show that both hypotonic stress and direct activation of TRPV4 by the specific agonist GSK1016790A triggered intracellular Ca2+ response. Strikingly, the Ca2+ increase upon hypotonic stress was neither affected by genetic knockout of TRPV4 in HaCaT cells nor by pharmacological inhibition of TRPV4 in both keratinocyte cell lines. Accordingly, hypotonicity-induced cell swelling, downstream activation of VRAC currents as well as subsequent RVD were unaffected both in TRPV4 inhibitor-treated keratinocytes and in HaCaT-TRPV4-/- cells. In summary, our study shows that keratinocytes do not require TRPV4 for coping with hypotonic stress, which implies the involvement of other, yet unidentified Ca2+ channels.


Assuntos
Queratinócitos , Canais de Cátion TRPV , Animais , Humanos , Pressão Osmótica , Canais de Cátion TRPV/metabolismo , Linhagem Celular , Queratinócitos/metabolismo , Tamanho Celular , Cálcio/metabolismo , Soluções Hipotônicas/farmacologia , Soluções Hipotônicas/metabolismo , Mamíferos/metabolismo
8.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728502

RESUMO

Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a ß-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in ß-alanine, which inhibits cardiomyocyte taurine uptake. Cardiac taurine levels were reduced by 21% and stress-induced changes in normal taurine handling were observed in TD brook char. Responses to exhaustive exercise and acute thermal and hypoxia tolerance were then assessed using a combination of in vivo, in vitro and biochemical approaches. Critical thermal maximum was higher in TD brook char despite significant reductions in maximum heart rate. In vivo, TD brook char exhibited a lower resting heart rate, blunted hypoxic bradycardia and a severe reduction in time to loss of equilibrium under hypoxia. In vitro function was similar between control and TD hearts under oxygenated conditions, but stroke volume and cardiac output were severely compromised in TD hearts under severe hypoxia. Aspects of mitochondrial structure and function were also impacted in TD permeabilized cardiomyocytes, but overall effects were modest. High levels of intracellular taurine are required to achieve maximum cardiac function in brook char and cardiac taurine efflux may be necessary to support heart function under stress. Taurine appears to play a vital, previously unrecognized role in supporting cardiovascular function and stress tolerance in fish.


Assuntos
Taurina , Truta , Animais , Truta/fisiologia , Temperatura , Miócitos Cardíacos , Hipóxia
9.
Anal Bioanal Chem ; 415(2): 245-254, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399229

RESUMO

All vertebrate cells generally self-regulate for sustaining homeostasis and cell functions. As a major regulatory mechanism, regulatory volume decrease (RVD) occurs in hypotonicity-induced cell swelling, and then shrinking by the efflux of intracellular osmolytes and water, in which the ions K+, Cl-, and Ca2+ play a key role in the RVD process. We observed that these pivotal ions could result in novel RVD behaviors under repeatedly hypotonic stimulation. However, there is a lack of valid means for assessing the effect of pivotal ions on RVD. In this work, we proposed an effective measurement process based on a quartz crystal microbalance (QCM) combined with cell function of RVD for revealing acute variations in cell volume regulation induced by the pivotal ions. A QCM sensor was implemented by adhering MCF-7 cells to a poly-l-lysine-modified gold chip and cyclic stimulation with hypotonic NaCl medium, in which a frequency shift (Δf) showed the superior feasibility of the technique in exhibiting RVD behaviors. With the increase in the number of cycles, the RVD values decreased progressively under three stimulation cycles with hypotonic NaCl alone. Compared with the first cycle, the RVD level in the second and third cycles declined by 60.7±1.7% and 82.1±1.6% (n=3), respectively; conversely, it recovered in NaCl-KCl solution, but was significantly enhanced by 52.2±0.8% in NaCl-CaCl2 solution. Moreover, the inhibition of chloride channels to block Cl- efflux also decreased the RVD level by 56.2±3.0%. The results indicate that these ions (K+, Cl-, Ca2+) are all able to affect the function of RVD, among which intracellular Cl- depletion reduced RVD during measurement, but which recovered with K+ supplement, and Ca2+ enhanced RVD due to activation of ion channels. Therefore, this work provides a comprehensive assessment of cellular behavior and offers an innovative method for gaining insight into cellular functions and mechanisms. A novel strategy was conducted by integrating a quartz crystal microbalance (QCM) with the function of cell volume regulation for analyzing the role of the pivotal ions ( K+, Cl-, Ca2+) in NaCl media on the behaviors of regulatory cell volume decrease (RVD).


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Cloreto de Sódio , Canais Iônicos , Transporte Biológico , Íons , Tamanho Celular
10.
Cancers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36230742

RESUMO

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.

11.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806375

RESUMO

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1-100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.


Assuntos
Oftalmopatias , Flavanonas , Animais , Humor Aquoso/metabolismo , Oftalmopatias/metabolismo , Flavanonas/metabolismo , Flavanonas/farmacologia , Pressão Intraocular , Camundongos , Cadeias Leves de Miosina/metabolismo , Malha Trabecular/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 113-125, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130619

RESUMO

The pericellular matrix stiffness is strongly associated with its biochemical and structural changes during the aging and osteoarthritis progress of articular cartilage. However, how substrate stiffness modulates the chondrocyte regulatory volume decrease (RVD) and calcium signaling in chondrocytes remains unknown. This study aims to investigate the effects of substrate stiffness on the chondrocyte RVD and calcium signaling by recapitulating the physiologically relevant substrate stiffness. Our results showed that substrate stiffness induces completely different dynamical deformations between the cell swelling and recovering progresses. Chondrocytes swell faster on the soft substrate but recovers slower than the stiff substrate during the RVD response induced by the hypo-osmotic challenge. We found that stiff substrate enhances the cytosolic Ca oscillation of chondrocytes in the iso-osmotic medium. Furthermore, chondrocytes exhibit a distinctive cytosolic Ca oscillation during the RVD response. Soft substrate significantly improves the Ca oscillation in the cell swelling process whereas stiff substrate enhances the cytosolic Ca oscillation in the cell recovering process. Our work also suggests that the TRPV4 channel is involved in the chondrocyte sensing substrate stiffness by mediating Ca signaling in a stiffness-dependent manner. This helps to understand a previously unidentified relationship between substrate stiffness and RVD response under the hypo-osmotic challenge. A better understanding of substrate stiffness regulating chondrocyte volume and calcium signaling will aid the development of novel cell-instructive biomaterial to restore cellular functions.


Assuntos
Cartilagem Articular , Osteoartrite , Cálcio/metabolismo , Sinalização do Cálcio , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Osmose/fisiologia , Osteoartrite/metabolismo
13.
Eur J Appl Physiol ; 122(3): 541-559, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037123

RESUMO

Skeletal muscle cells can both gain and lose volume during periods of exercise and rest. Muscle cells do not behave as perfect osmometers because the cell volume changes are less than predicted from the change in extracellular osmolality. Therefore, there are mechanisms involved in regulating cell volume, and they are different for regulatory volume decreases and regulatory volume increases. Also, after an initial rapid change in cell volume, there is a gradual and partial recovery of cell volume that is effected by ion and water transport mechanisms. The mechanisms have been studied in non-contracting muscle cells, but remain to be fully elucidated in contracting muscle. Changes in muscle cell volume are known to affect the strength of contractile activity as well as anabolic/catabolic signaling, perhaps indicating that cell volume should be a regulated variable in skeletal muscle cells. Muscles contracting at moderate to high intensity gain intracellular volume because of increased intracellular osmolality. Concurrent increases in interstitial (extracellular) muscle volume occur from an increase in osmotically active molecules and increased vascular filtration pressure. At the same time, non-contracting muscles lose cell volume because of increased extracellular (blood) osmolality. This review provides the physiological foundations and highlights key concepts that underpin our current understanding of volume regulatory processes in skeletal muscle, beginning with consideration of osmosis more than 200 years ago and continuing through to the process of regulatory volume decrease and regulatory volume increase.


Assuntos
Tamanho Celular , Exercício Físico/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Humanos , Concentração Osmolar , Osmose/fisiologia , Transdução de Sinais
14.
J Membr Biol ; 255(2-3): 261-276, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35098342

RESUMO

The volume-activated chloride channel (VACC) serves vital cellular functions in secretion and cell volume regulation via regulatory volume decrease (RVD) in various epithelia. Previously, we have shown that RVD in primary CF mouse cholangiocytes is impaired. Thus, the effect of CFTR defect on VACC and RVD in CF human immortalized cholangiocyte cell (HBDC) was examined in comparison with those in normal HBDC by using cell volume measurement and whole-cell patch clamp techniques, respectively. The CF HBDC had an impaired RVD, which was not further inhibited by removing the extracellular calcium or administering BAPTA-AM, NPPB, or DIDS. When exposed to a hypotonic solution, CF HBDC exhibited large, outwardly rectified currents with time-dependent inactivation at a positive potential. The amplitude of the outward currents was about three times that of the inward currents. The amplitude and reversal potential of VACC was dependent on chloride concentration. The VACC was significantly inhibited by replacing chloride with gluconate, glutamate, sucrose, or acetate in the hypotonic solution as well as by an administration of NPPB or tamoxifen, classical VACC inhibitors. Surprisingly, the VACC amplitude is greater in CF HBDC than in normal HBDC, suggesting that the channel density or open probability of VACC is increased, thus CFTR may have inhibitory effects on VACC. On the contrary, the amplitude of the volume-activated potassium current is lower in CF HBDC, suggesting the potassium channel density or open probability is decreased in CF cholangiocytes and/or CFTR may have regulatory effects on volume-activated potassium current. In conclusion, RVD is impaired in CF human cholangiocytes. The VACC of CF human cholangiocytes has similar electrophysiological characteristics as that of normal cholangiocytes but its activity is augmented in CF cholangiocytes, while volume-activated potassium current is decreased in CF human cholangiocytes, providing a fundamental underlying pathophysiologic mechanism for the impaired RVD in CF cholangiocytes.


Assuntos
Cloretos , Fibrose Cística , Animais , Linhagem Celular , Tamanho Celular , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Humanos , Soluções Hipotônicas/farmacologia , Camundongos , Potássio/metabolismo
15.
J Cell Physiol ; 237(3): 1857-1870, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913176

RESUMO

Regulatory volume decrease (RVD), a homeostatic process responsible for the re-establishment of the original cell volume upon swelling, is critical in controlling several functions, including migration. RVD is mainly sustained by the swelling-activated Cl- current (ICl,swell ), which can be modulated by cytoplasmic Ca2+ . Cell swelling also activates mechanosensitive channels, including the ubiquitously expressed Ca2+ -permeable channel Piezo1. We hypothesized that, by controlling cytoplasmic Ca2+ and in turn ICl,swell , Piezo1 is involved in the fine regulation of RVD and cell migration. We compared RVD and ICl,swell in wild-type (WT) HEK293T cells, which express endogenous levels of Piezo1, and in cells overexpressing (OVER) or knockout (KO) for Piezo1. Compared to WT, RVD was markedly increased in OVER, while virtually absent in KO cells. Consistently, ICl,swell amplitude was highest in OVER and lowest in KO cells, with WT cells displaying an intermediate level, suggesting a Ca2+ -dependent modulation of the current by Piezo1 channels. Indeed, in the absence of external Ca2+ , ICl,swell in both WT and OVER cells, as well as the RVD probed in OVER cells, were significantly lower than in the presence of Ca2+ and no longer different compared to KO cells. However, the Piezo-mediated Ca2+ influx was ineffective in enhancing ICl,swell in the absence of releasable Ca2+ from intracellular stores. The different expression levels of Piezo1 affected also cell migration which was strongly enhanced in OVER, while reduced in KO cells, as compared to WT. Taken together, our data indicate that Piezo1 controls RVD and migration in HEK293T cells by modulating ICl,swell through Ca2+ influx.


Assuntos
Cálcio , Tamanho Celular , Canais de Cloreto , Canais Iônicos , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Canais Iônicos/genética
16.
Front Cell Dev Biol ; 9: 736488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869320

RESUMO

Cation-coupled chloride cotransporters play a key role in generating the Cl- electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl- channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.

17.
Cell Physiol Biochem ; 55(S1): 185-195, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34694072

RESUMO

BACKGROUND/AIMS: The osmolytes involved in the volume regulation of hyposmotically-swollen fish cells are well identified. However, if a coordination and adjustments of their fluxes are obvious, few studies have clearly illustrated these aspects. METHODS: Trout red blood cells volume variations were estimated from water contents obtained by a gravimetric method. Intracellular K+ and Na+ contents, and Cl- content of haemolysed cells were determined by photometry and colorimetry, respectively. The taurine contribution to cell volume regulation was calculated from the net changes of water, K+, Cl- and Na+ contents. The intracellular pH was calculated from the chloride distribution across the cells membranes according to the Donnan equilibrium. RESULTS: Cells responses to a rapid change (from 296 to 176 mOsm.kg-1)of the saline osmolality were examined in three conditions designed to not impact (Hypo. I)or to reduce the K+ (Hypo. II) and Cl- (Hypo. III) contributions to the volume regulation. Hypo. I condition caused an immediate increase in water content, followed by a 90 min. full regulation, concomitant with gradual lowering of K+ and Cl- contents and a surprising increase in Na+ content. Hypo. II and III conditions showed a partial and complete volume regulation, respectively. This was made possible by an increase in the taurine involvement. These experiments allowed to confirm that K+ and Cl- were released via KCl cotransport and by separate channels. The comparison of Hypo. I and III conditions led to the observation that the partially amiloride-sensitive Na+ influx is proportional to the taurine efflux; the latter being sustained mainly by a Na+/taurine cotransport. The Hypo. II condition was suitable for the (Na+/K+)ATPase activity inhibition. This effect could explain the observed lack of Na+ uptake, the consecutive depletion of intracellular taurine stock and the incomplete volume regulation. Finally, the results support the importance of taurine in pH control under Hypo. I (physiologic) condition. The alkalosis observed in Hypo. II and III conditions were the consequences of changes in the salines compositions, not of physiologic adjustments. CONCLUSION: The regulatory volume decrease process of trout RBCs is complex and adjustable through coordinated osmolytes movements. The obliged decrease in K+ and/or Cl- contributions stimulates taurine and Na+ pathways. This study highlights the importance of taurine as a compensatory variable in cell volume regulation and explains for the first time the significance of the Na+ uptake during this process.


Assuntos
Eritrócitos/citologia , Oncorhynchus mykiss/metabolismo , Pressão Osmótica , Animais , Permeabilidade da Membrana Celular , Tamanho Celular , Cloretos/metabolismo , Eritrócitos/metabolismo , Concentração Osmolar , Potássio/metabolismo , Sódio/metabolismo , Taurina/metabolismo
18.
Biochem Pharmacol ; 193: 114791, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582774

RESUMO

The representative morphological features of pyroptosis are excessive cell swelling and subsequent membrane rupture. However, the mechanism underlying the cell's inherent inability to regulate volume during the progression of pyroptosis is poorly understood. In the current study, we found that both volume-activated chloride currents (Icl, vol) and the regulatory volume decrease (RVD) were markedly decreased in bone marrow-derived macrophages (BMDMs) undergoing pyroptosis induced by lipopolysaccharides (LPS) and nigericin. The inhibition of ICl, vol and RVD by the chloride channel blockers, tamoxifen or DCPIB, led to the emergence of pyroptosis-like phenotypes such as activated-caspase-1, pyroptotic-body-like bubbles, and a fried-egg-like appearance. Moreover, the expression of the volume-activated chloride channel (VRAC) constituent protein Leucine-Rich Repeat-Containing 8A (LRRC8A) was significantly down-regulated in pyroptotic BMDMs treated with LPS and nigericin. The silencing of LRRC8A expression by small interfering RNA (si)-LRRC8A transfection not only reduced ICl, vol and RVD, but also caused BMDMs to show pyroptosis-like manifestations such as activated-caspase-1, membrane bubbles, and have a fried-egg-like appearance. These results reveal a new mechanism for the loss of volume regulation in the process of pyroptotic cell swelling and strongly suggest that a functional deficiency of VRAC/LRRC8A plays a key role in this disorder.


Assuntos
Canais de Cloreto/metabolismo , Lipopolissacarídeos/toxicidade , Nigericina/toxicidade , Piroptose/efeitos dos fármacos , Animais , Antibacterianos/toxicidade , Biomarcadores , Ciclopentanos/farmacologia , Antagonistas de Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Indanos/farmacologia , Macrófagos , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Tamoxifeno/farmacologia
19.
J Cardiovasc Pharmacol Ther ; 26(6): 550-561, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34138674

RESUMO

Chloride channel 3 (ClC-3), a Cl-/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Canais de Cloreto/metabolismo , Lipoproteínas LDL/metabolismo , Canais de Cloreto/efeitos dos fármacos , Humanos , Estresse Oxidativo
20.
Fish Physiol Biochem ; 47(4): 1105-1117, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052972

RESUMO

Activation of the cAMP pathway by ß-adrenergic stimulation and cGMP pathway by activation of guanylate cyclase substantially affects red blood cell (RBC) membrane properties in mammals. However, whether similar mechanisms are involved in RBC regulation of lower vertebrates, especially teleosts, is not elucidated yet. In this study, we evaluated the effects of adenylate cyclase activation by epinephrine and forskolin, guanylate cyclase activation by sodium nitroprusside, and the role of Na+/H+-exchanger in the changes of osmotic fragility and regulatory volume decrease (RVD) response in crucian carp RBCs. Western blot analysis of protein kinase A and protein kinase G substrate phosphorylation revealed that changes in osmotic fragility were regulated via the protein kinase A, but not protein kinase G signaling pathway. At the same time, the RVD response in crucian carp RBCs was not affected either by activation of adenylate or guanylate cyclase. Adenylate cyclase/protein kinase A activation significantly decreased RBC osmotic fragility, i.e., increased cell rigidity. Inhibition of Na+/H+-exchanger by amiloride had no effect on the epinephrine-mediated decrease of RBC osmotic fragility. NO donor SNP did not activate guanylate cyclase, however affected RBCs osmotic fragility by protein kinase G-independent mechanisms. Taken together, our data demonstrated that the cAMP/PKA signaling pathway and NO are involved in the regulation of crucian carp RBC osmotic fragility, but not in RVD response. The authors confirm that the study has no clinical trial.


Assuntos
Carpas/sangue , Carpas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Peixes/metabolismo , Óxido Nítrico/metabolismo , Adenilil Ciclases/metabolismo , Animais , Plaquetas/enzimologia , Humanos , Fragilidade Osmótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...