Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39391967

RESUMO

Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a ∼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of ∼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately ∼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past ∼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.

2.
Fish Shellfish Immunol ; 154: 109878, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245186

RESUMO

The fourfinger threadfin fish (Eleutheronema tetradactylum) is an economically significant species renowned for its ability to adapt to varying salinity environments, with gills serving as their primary organs for osmoregulation and immune defense. Previous studies focused on tissue and morphological levels, whereas ignored the cellular heterogeneity and the crucial gene information related to core cell subsets within E. tetradactylum gills. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to analyze the gills of E. tetradactylum, characterizing 16 distinct cell types and identifying unique gene markers and enriched functions associated within each cell type. Additionally, we subdivided ionocyte cells into four distinct subpopulations for the first time in E. tetradactylum gills. By employing weighted gene co-expression network analysis (WGCNA), we further investigated the cellular heterogeneity and specific response mechanisms to salinity fluctuant. Our findings revealed the intricate osmoregulation and immune functions of gill cells, highlighting their crucial roles in maintaining homeostasis and adapting to fluctuating salinity levels. This comprehensive cell-type atlas provides valuable insights into the species adaptive strategies, contributing to the conservation and management of this commercially significant fish as well as other euryhaline species.

3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030685

RESUMO

Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-ß-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-ß-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.


Assuntos
Archaea , Água Doce , Metano , Osmorregulação , Filogenia , Estresse Salino , Metano/metabolismo , Água Doce/microbiologia , Anaerobiose , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Oxirredução
4.
Appl Environ Microbiol ; 90(5): e0014524, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38578096

RESUMO

The bacterium Natranaerobius thermophilus is an extremely halophilic alkalithermophile that can thrive under conditions of high salinity (3.3-3.9 M Na+), alkaline pH (9.5), and elevated temperature (53°C). To understand the molecular mechanisms of salt adaptation in N. thermophilus, it is essential to investigate the protein, mRNA, and key metabolite levels on a molecular basis. Based on proteome profiling of N. thermophilus under 3.1, 3.7, and 4.3 M Na+ conditions compared to 2.5 M Na+ condition, we discovered that a hybrid strategy, combining the "compatible solute" and "salt-in" mechanisms, was utilized for osmotic adjustment dur ing the long-term salinity adaptation of N. thermophilus. The mRNA level of key proteins and the intracellular content of compatible solutes and K+ support this conclusion. Specifically, N. thermophilus employs the glycine betaine ABC transporters (Opu and ProU families), Na+/solute symporters (SSS family), and glutamate and proline synthesis pathways to adapt to high salinity. The intracellular content of compatible solutes, including glycine betaine, glutamate, and proline, increases with rising salinity levels in N. thermophilus. Additionally, the upregulation of Na+/ K+/ H+ transporters facilitates the maintenance of intracellular K+ concentration, ensuring cellular ion homeostasis under varying salinities. Furthermore, N. thermophilus exhibits cytoplasmic acidification in response to high Na+ concentrations. The median isoelectric points of the upregulated proteins decrease with increasing salinity. Amino acid metabolism, carbohydrate and energy metabolism, membrane transport, and bacterial chemotaxis activities contribute to the adaptability of N. thermophilus under high salt stress. This study provides new data that support further elucidating the complex adaptation mechanisms of N. thermophilus under multiple extremes.IMPORTANCEThis study represents the first report of simultaneous utilization of two salt adaptation mechanisms within the Clostridia class in response to long-term salinity stress.


Assuntos
Proteínas de Bactérias , Potássio , Estresse Salino , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adaptação Fisiológica , Salinidade
5.
Plant Biotechnol J ; 22(9): 2558-2574, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38685729

RESUMO

Spartina alterniflora is an exo-recretohalophyte Poaceae species that is able to grow well in seashore, but the genomic basis underlying its adaptation to salt tolerance remains unknown. Here, we report a high-quality, chromosome-level genome assembly of S. alterniflora constructed through PacBio HiFi sequencing, combined with high-throughput chromosome conformation capture (Hi-C) technology and Illumina-based transcriptomic analyses. The final 1.58 Gb genome assembly has a contig N50 size of 46.74 Mb. Phylogenetic analysis suggests that S. alterniflora diverged from Zoysia japonica approximately 21.72 million years ago (MYA). Moreover, whole-genome duplication (WGD) events in S. alterniflora appear to have expanded gene families and transcription factors relevant to salt tolerance and adaptation to saline environments. Comparative genomics analyses identified numerous species-specific genes, significantly expanded genes and positively selected genes that are enriched for 'ion transport' and 'response to salt stress'. RNA-seq analysis identified several ion transporter genes including the high-affinity K+ transporters (HKTs), SaHKT1;2, SaHKT1;3 and SaHKT1;8, and high copy number of Salt Overly Sensitive (SOS) up-regulated under high salt conditions, and the overexpression of SaHKT2;4 in Arabidopsis thaliana conferred salt tolerance to the plant, suggesting specialized roles for S. alterniflora to adapt to saline environments. Integrated metabolomics and transcriptomics analyses revealed that salt stress activate glutathione metabolism, with differential expressions of several genes such as γ-ECS, GSH-S, GPX, GST and PCS in the glutathione metabolism. This study suggests several adaptive mechanisms that could contribute our understanding of evolutional basis of the halophyte.


Assuntos
Genoma de Planta , Filogenia , Poaceae , Tolerância ao Sal , Tolerância ao Sal/genética , Genoma de Planta/genética , Poaceae/genética , Poaceae/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plants (Basel) ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38498522

RESUMO

As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.

7.
J Exp Zool A Ecol Integr Physiol ; 341(5): 615-626, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38529846

RESUMO

Several crustaceans including shrimps change the amount of specific free amino acids to regulate the osmotic pressure in their bodies. Kuruma shrimp Penaeus japonicus also increases the concentration of alanine (Ala) in the abdominal muscle following the increase of environmental salinity. In the present study, to elucidate the mechanisms of changes in Ala accumulation of kuruma shrimp depending on salinity, we cloned the gene encoding alanine aminotransferase (ALT), an enzyme involved in Ala biosynthesis, and examined its expression profile. It was found that the full-length kuruma shrimp ALT1 cDNA consisted of 3,301 bp, encoding 514 amino acids, and that all amino acid residues important for ALT activity were conserved. Phylogenetic analysis also indicated that the ALT gene cloned in this study was classified as ALT1. Moreover, we examined the expression levels of the ALT1 gene in the abdominal muscle and the hepatopancreas of kuruma shrimp acclimated at 17‰, 34‰, and 40‰ salinities, resulting that the mRNA levels of the ALT1 genes in both tissues of the shrimp acclimated at 40‰ were significantly higher than those at 17‰ for 12 h (p < 0.05). The mRNA levels of the ALT1 gene in the abdominal muscle of the shrimp acclimated for more than 24 h tended to increase following the increase of environmental salinity. These results indicate that ALT1 is responsible for the increase of free Ala concentration in the abdominal muscle of kuruma shrimp to regulate osmotic pressure at high salinity.


Assuntos
Alanina Transaminase , Sequência de Aminoácidos , Clonagem Molecular , Penaeidae , Filogenia , Salinidade , Animais , Penaeidae/genética , Penaeidae/enzimologia , Penaeidae/metabolismo , Alanina Transaminase/metabolismo , Alanina Transaminase/genética , Regulação Enzimológica da Expressão Gênica , Sequência de Bases
8.
Environ Res ; 248: 118213, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280526

RESUMO

Global ocean salinity is changing under rapid climate change and intensified anthropogenic activity. Increased differences in salinity threaten marine biodiversity, organismal survival, and evolution, particularly sessile invertebrates dwelling in highly fluctuating intertidal and estuarine environments. Comparing the responses of closely related species to salinity changes can provide insights into the adaptive mechanisms underlying inter- and intraspecific divergence in salinity tolerance, but are poorly understood in marine bivalves. We collected wild individuals of four Crassostrea species, in addition to two populations of the same species from their native habitats and determined the dynamics of hydrolyzed amino acids (HAAs) and transcriptional responses to hypersaline stress. In response to hypersaline stress, species/populations inhabiting natural high-salinity sea environments showed higher survival and less decline in HAAs than that of congeners inhabiting low-salinity estuaries. Thus, native environmental salinity shapes oyster tolerance. Notably, a strong negative correlation between the decline in HAAs and survival indicated that the HAAs pool could predict tolerance to hypersaline challenge. Four HAAs, including glutamine (Glu), aspartic acid (Asp), alanine (Ala) and glycine (Gly), were identified as key amino acids that contributed substantially to the emergency response to hypersaline stress. High-salinity-adapted oyster species only induced substantial decreases in Glu and Asp, whereas low-salinity-adapted congeners further incresaed Ala and Gly metabolism under hypersaline stress. The dynamics of the content and gene expression responsible for key amino acids pathways revealed the importance of maintaining the balance between energy production and ammonia detoxification in divergent hypersaline responses among oyster species/populations. High constructive or plastic expression of evolutionarily expanded gene copies in high-salinity-adapted species may contribute to their greater hypersaline tolerance. Our findings reveal the adaptive mechanism of key amino acids in salinity adaptation in marine bivalves and provide new avenues for the prediction of adaptive potential and aquaculture with high-salinity tolerant germplasms.


Assuntos
Crassostrea , Humanos , Animais , Crassostrea/genética , Amônia , Aminoácidos , Meio Ambiente , Ecossistema , Salinidade
9.
Front Genet ; 14: 1209843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719712

RESUMO

Introduction: Brain being the master regulator of the physiology of animal, the current study focuses on the gene expression pattern of the brain tissue with special emphasis on regulation of growth, developmental process of an organism and cellular adaptation of Labeo rohita against unfavourable environmental conditions. Methods: RNA-seq study was performed on collected brain samples at 8ppt salt concentration and analyzed for differential gene expression, functional annotation and miRNA-mRNA regulatory network. Results: We found that 2450 genes were having significant differential up and down regulation. The study identified 20 hub genes based on maximal clique centrality algorithm. These hub genes were mainly involved in various signaling pathways, energy metabolism and ion transportation. Further, 326 up and 1214 down regulated genes were found to be targeted by 7 differentially expressed miRNAs i.e., oni-miR-10712, oni-miR-10736, ssa-miR-221-3p, ssa-miR-130d-1-5p, ssa-miR-144-5p and oni-miR-10628. Gene ontology analysis of these differentially expressed genes led to the finding that these genes were involved in signal transduction i.e., calcium, FOXO, PI3K-AKT, TGF-ß, Wnt and p53 signalling pathways. Differentially expressed genes were also involved in regulation of immune response, environmental adaptation i.e., neuroactive ligand-receptor interaction, ECM-receptor interaction, cell adhesion molecules and circadian entrainment, osmoregulation and energy metabolism, which are critical for salinity adaptation. Discussion: The findings of whole transcriptomic study on brain deciphered the miRNA-mRNA interaction patterns and pathways associated with salinity adaptation of L. rohita.

10.
Mol Phylogenet Evol ; 186: 107832, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263456

RESUMO

We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.


Assuntos
Peixes , Água Doce , Animais , Filogenia , Oceano Índico , Austrália , Peixes/genética
11.
DNA Res ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37167434

RESUMO

The genetic bases of halophytes for salinity tolerance are crucial for genetically breeding salt-tolerant crops. All natural Nitrariaceae species that exclusively occur in arid environments are highly tolerant to salt stress, but the underlying genomic bases to this adaptation remain unknown. Here we present a high-quality, chromosome-level genome sequence of Nitraria sibirica, with an assembled size of 456.66 Mb and 23,365 annotated genes. Phylogenomic analyses confirmed N. sibirica as the sister to all other sampled representatives from other families in Sapindales, and no lineage-specific whole-genome duplication was found except the gamma triplication event. Still, we found that the genes involved in K + retention, energy supply, and Fe absorption expanded greatly in N. sibirica. Deep transcriptome analyses showed that leaf photosynthesis and cuticular wax formation in roots were enhanced under salt treatments. Furthermore, many transcription factors involved in salt tolerance changed their expressions significantly and displayed tissue- and concentration-dependent signaling in response to salt stress. Additionally, we found vacuolar Na + compartmentalization is an ongoing process under salt treatment, while Na + exclusion tends to function at high salt concentrations. These genomic and transcriptomic changes conferred salt tolerance in N. sibirica and pave the way for future breeding of salt-tolerant crops.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36336300

RESUMO

This study describes the analysis of antioxidant enzymatic activities (catalase and superoxide dismutase) in gills and functional state of hemocytes (osmotic stability, mitochondrial membrane potential) of ark clams (Anadara kagoshimensis) from the Black Sea basin exposed to salinity stress. For this, the effects of 48 h periods of exposure to low (8 ‰, 14 ‰) and high (35 ‰, 45 ‰) salinity were assessed. Our results showed that ark clams, A. kagoshimensis, possessed pronounced tolerance to hypersalinity stress and are sensitive to a short-time hyposalinity treatment. Salinity 35 ‰ inhibited production of reactive oxygen species (ROS) by hemocytes and did not affect their levels of mitochondrial membrane potential. Acclimation to 45 ‰ salinity caused significant increase in mitochondrial membrane potential accompanied with recovery of intracellular ROS levels up to controls levels. Acclimation to low salinity (8 ‰) induced an increase in both ROS and mitochondrial membrane potential levels in hemocytes. Catalase and superoxide dismutase activity in gills decreased following acclimation to low (8 ‰) and high (35 ‰) salinity. Exposure to the highest salinity levels (45 ‰) led to a decrease of superoxide dismutase activity levels, but did not influence the levels of catalase activity. Acclimation to low and high salinity was not accompanied with changes in osmotic fragility of hemocytes despite osmotic fragility curve according to changes in hemolymph osmolarity. Based upon these results, we postulate the involvement of cellular osmoregulatory mechanisms in the adaptation of the ark clam to short-term fluctuations of environmental salinity.


Assuntos
Arcidae , Bivalves , Animais , Hemócitos , Brânquias , Antioxidantes , Catalase , Espécies Reativas de Oxigênio , Superóxido Dismutase/farmacologia
13.
Front Physiol ; 13: 991366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311223

RESUMO

The increasing salinization of freshwater resources, owing to global warming, has caused concern to freshwater aquaculturists. In this regard, the present study is aimed at economically important freshwater fish, L. rohita (rohu) adapting to varying degrees of salinity concentrations. The RNA-seq analysis of kidney tissue samples of L. rohita maintained at 2, 4, 6, and 8 ppt salinity was performed, and differentially expressed genes involved in various pathways were studied. A total of 755, 834, 738, and 716 transcripts were downregulated and 660, 926, 576, and 908 transcripts were up-regulated in 2, 4, 6, and 8 ppt salinity treatment groups, respectively, with reference to the control. Gene ontology enrichment analysis categorized the differentially expressed genes into 69, 154, 92, and 157 numbers of biological processes with the p value < 0.05 for 2, 4, 6, and 8 ppt salinity groups, respectively, based on gene functions. The present study found 26 differentially expressed solute carrier family genes involved in ion transportation and glucose transportation which play a significant role in osmoregulation. In addition, the upregulation of inositol-3-phosphate synthase 1A (INO1) enzyme indicated the role of osmolytes in salinity acclimatization of L. rohita. Apart from this, the study has also found a significant number of genes involved in the pathways related to salinity adaptation including energy metabolism, calcium ion regulation, immune response, structural reorganization, and apoptosis. The kidney transcriptome analysis elucidates a step forward in understanding the osmoregulatory process in L. rohita and their adaptation to salinity changes.

14.
Int J Biol Macromol ; 221: 1545-1557, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36122778

RESUMO

Recently, the frequent salinity fluctuation has become a growing threat to fishes. However, the dynamic patterns of gene expression in response to salinity changes remain largely unexplored. In the present study, 18 RNA-Seq datasets were generated from gills of rainbow trout at different salinities, including 0 ‰, 6 ‰, 12 ‰, 18 ‰, 24 ‰ and 30 ‰. Based on the strict thresholds, we have identified 63, 1411, 2096, 1031 and 1041 differentially expressed genes in gills of rainbow trout through pairwise comparisons. Additionally, weighted gene co-expression network analysis was performed to construct 18 independent modules with distinct expression patterns. Of them, green and tan modules were found to be tightly related to salinity changes, several hub genes of which are known as the important regulators in taurine and glutamine metabolism. To further investigate their potential roles in response to salinity changes, taurine, glutamine, and their metabolism-related glutamic acid and α-ketoglutaric acid were accurately quantitated using liquid chromatography-tandem mass spectrometry analysis. Results clearly showed that their concentrations were closely associated with salinity changes. These findings suggested that taurine and glutamine play important roles in response to salinity changes in gills of rainbow trout, providing new insights into the molecular mechanism of fishes in salinity adaptation.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Brânquias/metabolismo , Salinidade , Glutamina/metabolismo , Transcriptoma , Taurina/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
15.
Cell Tissue Res ; 390(3): 385-398, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075993

RESUMO

Branchial chambers constitute the main osmoregulatory site in almost all decapod crustaceans. However, few studies have been devoted to elucidate the cellular function of specific cells in every osmoregulatory structure of the branchial chambers. In decapod crustaceans, it is well-known that the osmoregulatory function is localized in specific structures that progressively specialize from early developmental stages while specific molecular mechanisms occur. In this study, we found that although the structures developed progressively during the larval and postlarval stages, before reaching juvenile or adult morphology, the osmoregulatory capabilities of Litopenaeus vannamei were gradually established only during the development of branchiostegites and epipodites, but not gills. The cellular structures of the branchial chambers observed during the larval phase do not present the typical ultrastructure of ionocytes, neither Na+/K+-ATPase expression, likely indicating that pleura, branchiostegites, or bud gills do not participate in osmoregulation. During early postlarval stages, the lack of Na+/K+-ATPase immunoreactivity of the ionocytes from the branchiostegites and epipodites suggests that they are immature ionocytes (ionocytes type I). It could be inferred from IIF and TEM results that epipodites and branchiostegites are involved in iono-osmoregulation from PL15, while gills and pleura do not participate in this function.


Assuntos
Penaeidae , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Osmorregulação , Equilíbrio Hidroeletrolítico , Brânquias , Larva/metabolismo , Salinidade
16.
Mol Plant ; 15(6): 1024-1044, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35514085

RESUMO

Halophytes have evolved specialized strategies to cope with high salinity. The extreme halophyte sea lavender (Limonium bicolor) lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions, such as sodium, to avoid salt damage. Here, we report a high-quality, 2.92-Gb, chromosome-scale L. bicolor genome assembly based on a combination of Illumina short reads, single-molecule, real-time long reads, chromosome conformation capture (Hi-C) data, and Bionano genome maps, greatly enriching the genomic information on recretohalophytes with multicellular salt glands. Although the L. bicolor genome contains genes that show similarity to trichome fate genes from Arabidopsis thaliana, it lacks homologs of the decision fate genes GLABRA3, ENHANCER OF GLABRA3, GLABRA2, TRANSPARENT TESTA GLABRA2, and SIAMESE, providing a molecular explanation for the absence of trichomes in this species. We identified key genes (LbHLH and LbTTG1) controlling salt gland development among classical trichome homologous genes and confirmed their roles by showing that their mutations markedly disrupted salt gland initiation, salt secretion, and salt tolerance, thus offering genetic support for the long-standing hypothesis that salt glands and trichomes may share a common origin. In addition, a whole-genome duplication event occurred in the L. bicolor genome after its divergence from Tartary buckwheat and may have contributed to its adaptation to high salinity. The L. bicolor genome resource and genetic evidence reported in this study provide profound insights into plant salt tolerance mechanisms that may facilitate the engineering of salt-tolerant crops.


Assuntos
Arabidopsis , Plumbaginaceae , Animais , Folhas de Planta/genética , Plumbaginaceae/genética , Salinidade , Glândula de Sal , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética
17.
Biology (Basel) ; 11(2)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35205090

RESUMO

Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.

18.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494283

RESUMO

BACKGROUND: The woody halophyte Tamarix chinensis is a pioneer tree species in the coastal wetland ecosystem of northern China, exhibiting high resistance to salt stress. However, the genetic information underlying salt tolerance in T. chinensis remains to be seen. Here we present a genomic investigation of T. chinensis to elucidate the underlying mechanism of its high resistance to salinity. RESULTS: Using a combination of PacBio and high-throughput chromosome conformation capture data, a chromosome-level T. chinensis genome was assembled with a size of 1.32 Gb and scaffold N50 of 110.03 Mb. Genome evolution analyses revealed that T. chinensis significantly expanded families of HAT and LIMYB genes. Whole-genome and tandem duplications contributed to the expansion of genes associated with the salinity adaptation of T. chinensis. Transcriptome analyses were performed on root and shoot tissues during salt stress and recovery, and several hub genes responding to salt stress were identified. WRKY33/40, MPK3/4, and XBAT31 were critical in responding to salt stress during early exposure, while WRKY40, ZAT10, AHK4, IRX9, and CESA4/8 were involved in responding to salt stress during late stress and recovery. In addition, PER7/27/57/73 encoding class III peroxidase and MCM3/4/5/7 encoding DNA replication licensing factor maintained up/downregulation during salt stress and recovery stages. CONCLUSIONS: The results presented here reveal the genetic mechanisms underlying salt adaptation in T. chinensis, thus providing important genomic resources for evolutionary studies on tamarisk and plant salt tolerance genetic improvement.


Assuntos
Tamaricaceae , Tamaricaceae/genética , Plantas Tolerantes a Sal/genética , Salinidade , Ecossistema , Genômica
19.
Mol Ecol Resour ; 22(4): 1606-1625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34854556

RESUMO

Portunus trituberculatus (Crustacea: Decapoda: Brachyura), commonly known as the swimming crab, is of major ecological importance, as well as being important to the fisheries industry. P. trituberculatus is also an important farmed species in China due to its rapid growth rate and high economic value. Here, we report the genome sequence of the swimming crab, which was assembled at the chromosome scale, covering ~1.2 Gb, with 79.99% of the scaffold sequences assembled into 53 chromosomes. The contig and scaffold N50 values were 108.7 kb and 15.6 Mb, respectively, with 19,981 protein-coding genes. Based on comparative genomic analyses of crabs and shrimps, the C2H2 zinc finger protein family was found to be the only gene family expanded in crab genomes, suggesting it was closely related to the evolution of crabs. The combination of transcriptome and bulked segregant analysis provided insights into the genetic basis of salinity adaptation and rapid growth in P. trituberculatus. In addition, the specific region of the Y chromosome was located for the first time in the genome of P. trituberculatus, and three genes were preliminarily identified as candidate genes for sex determination in this region. Decoding the swimming crab genome not only provides a valuable genomic resource for further biological and evolutionary studies, but is also useful for molecular breeding of swimming crabs.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Cromossomos , Genoma/genética , Salinidade , Transcriptoma
20.
Animals (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071210

RESUMO

The European sea bass (Dicentrarchus labrax) is a euryhaline marine teleost that can often be found in brackish and freshwater or even in hypersaline environments. Here, we exposed sea bass juveniles to sustained salinity challenges for 15 days, simulating one hypoosmotic (3‰), one isosmotic (12‰) and one hyperosmotic (50‰) environment, in addition to control (35‰). We analyzed parameters of skin mucus exudation and mucus biomarkers, as a minimally invasive tool, and plasma biomarkers. Additionally, Na+/K+-ATPase activity was measured, as well as the gill mucous cell distribution, type and shape. The volume of exuded mucus increased significantly under all the salinity challenges, increasing by 130% at 50‰ condition. Significantly greater amounts of soluble protein (3.9 ± 0.6 mg at 50‰ vs. 1.1 ± 0.2 mg at 35‰, p < 0.05) and lactate (4.0 ± 1.0 µg at 50‰ vs. 1.2 ± 0.3 µg at 35‰, p < 0.05) were released, with clear energy expenditure. Gill ATPase activity was significantly higher at the extreme salinities, and the gill mucous cell distribution was rearranged, with more acid and neutral mucin mucous cells at 50‰. Skin mucus osmolality suggested an osmoregulatory function as an ion-trap layer in hypoosmotic conditions, retaining osmosis-related ions. Overall, when sea bass cope with different salinities, the hyperosmotic condition (50‰) demanded more energy than the extreme hypoosmotic condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...