Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.880
Filtrar
1.
Front Oncol ; 14: 1336106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962268

RESUMO

Objective: The escape from T cell-mediated immune surveillance is an important cause of death for patients with acute myeloid leukemia (AML). This study aims to identify clonal heterogeneity in leukemia progenitor cells and explore molecular or signaling pathways associated with AML immune escape. Methods: Single-cell RNA sequencing (scRNA-seq) was performed to identified AML-related cellular subsets, and intercellular communication was analyzed to investigate molecular mechanisms associated with AML immune escape. Bulk RNA sequencing (RNA-seq) was performed to screen differentially expressed genes (DEGs) related to hematopoietic stem cell progenitors (HSC-Prog) in AML, and critical ore signaling pathways and hub genes were found by Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mRNA level of the hub gene was verified using quantitative real-time PCR (qRT-PCR) and the protein level of human leukocyte antigen A (HLA-A) using enzyme-linked immuno sorbent assay (ELISA). Results: scRNA-seq analysis revealed a large heterogeneity of HSC-Prog across samples, and the intercellular communication analysis indicated a strong association between HSC-Prog and CD8+-T cells, and HSC-Prog also had an association with HLA-A. Transcriptome analysis identified 1748 DEGs, enrichment analysis results showed that non-classical wnt signaling pathway was associated with AML, and 4 pathway-related genes (RHOA, RYK, CSNK1D, NLK) were obtained. After qRT-PCR and ELISA validation, hub genes and HLA-A were found to be down-regulated in AML and up-regulated after activation of the non-classical Wnt signaling pathway. Conclusion: In this study, clonal heterogeneity of HSC-Prog cells in AML was identified, non-classical wnt signaling pathways associated with AML were identified, and it was verified that HLA-A could be upregulated by activation of non-classical wnt signaling, thereby increasing antigen presentation.

2.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948758

RESUMO

Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.

3.
J Cyst Fibros ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969603

RESUMO

BACKGROUND: Sweat chloride concentration is used both for CF diagnosis and for tracking CFTR modulator efficacy over time, but the relationship between sweat chloride and lung health is heterogeneous and informed by CFTR genotype. Here, we endeavored to characterize ion transport in eccrine sweat glands (ESGs). METHODS: First, ESGs were microdissected from a non-CF skin donor to analyze individual glands. We established primary cultures of ESG cells via conditional reprogramming for functional testing of ion transport by short circuit current measurement and examined cell composition by single-cell RNA-sequencing (scRNA-seq) comparing with whole dissociated ESGs. Secondly, we cultured nasal epithelial (NE) cells and ESGs from two people with CF (pwCF) to assess modulator efficacy. Finally, NEs and ESGs were grown from one person with the CFTR genotype F312del/F508del to explore genotype-phenotype heterogeneity. RESULTS: ESG primary cells from individuals without CF demonstrated robust ENaC and CFTR function. scRNA-seq demonstrated both secretory and ductal ESG markers in cultured ESG cells. In both NEs and ESGs from pwCF homozygous for F508del, minimal baseline CFTR function was observed, and treatment with CFTR modulators significantly enhanced function. Notably, NEs from an individual bearing F312del/F508del exhibited significant baseline CFTR function, whereas ESGs from the same person displayed minimal CFTR function, consistent with observed phenotype. CONCLUSIONS: This study has established a novel primary culture technique for ESGs that allows for functional ion transport measurement to assess modulator efficacy and evaluate genotype-phenoytpe heterogeneity. To our knowledge, this is the first reported application of conditional reprogramming and scRNA-seq of microdissected ESGs.

4.
J Gene Med ; 26(7): e3712, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949072

RESUMO

Aggrephagy, a type of autophagy, degrades the aggregation of misfolded protein in cells. However, the role of aggrephagy in multiple myeloma (MM) has not been fully demonstrated. In this study, we first investigated the correlation between aggrephagy signaling, MM immune microenvironment composition and disease prognosis. Single-cell RNA-seq data, including the expression profiles of 12,187 single cells from seven MM bone marrow (BM) and seven healthy BM samples, were analyzed by non-negative matrix factorization for 44 aggrephagy-related genes. Bulk RNA-seq cohorts from the Gene Expression Omnibus database were used to evaluate the prognostic value of aggrephagy-related immune cell subtypes and predict immune checkpoint blockade immunotherapeutic response in MM. Compared with healthy BM, MM BM exhibited different patterns of aggrephagy-related gene expression. In MM BM, macrophages, CD8+ T cells, B cells and natural killer cells could be grouped into four to nine aggrephagy-related subclusters. The signature of aggrephagy signaling molecule expression in the immune cells correlates with the patient's prognosis. Our investigation provides a novel view of aggrephagy signaling in MM tumor microenvironment cells, which might be a prognostic indicator and potential target for MM treatment.


Assuntos
Mieloma Múltiplo , Transdução de Sinais , Análise de Célula Única , Microambiente Tumoral , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Autofagia/genética , Autofagia/imunologia , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Transcriptoma
5.
Methods ; 229: 115-124, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950719

RESUMO

Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: https://github.com/labiip/scGAAC.

6.
JHEP Rep ; 6(7): 101069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966234

RESUMO

Background & Aims: The lymphatic system plays crucial roles in maintaining fluid balance and immune regulation. Studying the liver lymphatics has been considered challenging, as common lymphatic endothelial cell (LyEC) markers are expressed by other liver cells. Additionally, isolation of sufficient numbers of LyECs has been challenging because of their extremely low abundance (<0.01% of entire liver cell population) in a normal liver. Methods: Potential LyEC markers was identified using our published single-cell RNA sequencing (scRNA-seq) dataset (GSE147581) in mouse livers. Interleukin-7 (IL7) promoter-driven green fluorescent protein knock-in heterozygous mice were used for the validation of IL7 expression in LyECs in the liver, for the development of liver LyEC isolation protocol, and generating liver ischemia/reperfusion (I/R) injury. Scanning electron microscopy was used for the structural analysis of LyECs. Changes in LyEC phenotypes in livers of mice with I/R were determined by RNA-seq analysis. Results: Through scRNA-seq analysis, we have identified IL7 as an exclusive marker for liver LyECs, with no overlap with other liver cell types. Based on IL7 expression in liver LyECs, we have established an LyEC isolation method and observed distinct cell surface structures of LyECs with fenestrae and cellular pores (ranging from 100 to 400 nm in diameter). Furthermore, we identified LyEC genes that undergo alterations during I/R liver injuries. Conclusions: This study not only identified IL7 as an exclusively expressed gene in liver LyECs, but also enhanced our understanding of LyEC structures and demonstrated transcriptomic changes in injured livers. Impact and implications: Understanding the lymphatic system in the liver is challenging because of the absence of specific markers for liver LyEC. This study has identified IL7 as a reliable marker for LyECs, enabling the development of an effective method for their isolation, elucidating their unique cell surface structure, and identifying LyEC genes that undergo changes during liver damage. The development of IL7 antibodies for detecting it in human liver specimens will further advance our understanding of the liver lymphatic system in the future.

7.
Prog Retin Eye Res ; 102: 101286, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969166

RESUMO

Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.

8.
Neural Netw ; 179: 106520, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39024709

RESUMO

Unsupervised representation learning (URL) is still lack of a reasonable operator (e.g. convolution kernel) for exploring meaningful structural information from generic data including vector, image and tabular data. In this paper, we propose a simple end-to-end T-distributed Stochastic Neighbor Network (TsNet) for URL with clustering downstream task. Concretely, our TsNet model has three major components: (1) an adaptive connectivity distribution learning module is presented to construct a pairwise graph for preserving the local structure of generic data; (2) a T-distributed stochastic neighbor embedding based loss function is designed to learn a transformation between embeddings and original data, which improves the discrimination of representations; (3) a nonlinear parametric mapping is learned via our TsNet on an unsupervised generalized manner, which can address the "out-of-sample" issue. By combining these components, our method is able to considerably outperform previous related unsupervised learning approaches on visualization and clustering of generic data. A simple deep neural network equipped on our model respectively achieves 74.90%, 76.56% ACC and NMI, which is 8% relative improvement over previous state-of-the-art on real single-cell RNA-sequencing (scRNA-seq) datasets clustering.

9.
Sci Rep ; 14(1): 16475, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014082

RESUMO

Osteosarcoma (OS) is a heterogeneous malignant spindle cell tumor that is aggressive and has a poor prognosis. Although combining surgery and chemotherapy has significantly improved patient outcomes, the prognosis for OS patients with metastatic or recurrent OS has remained unsatisfactory. Therefore, it is imperative to gain a fresh perspective on OS development mechanisms and treatment strategies. After studying single-cell RNA sequencing (scRNA-seq) data in public databases, we identified seven OS subclonal types based on intra-tumor heterogeneity. Subsequently, we constructed a prognostic model based on pro-protein synthesis osteosarcoma (PPS-OS)-associated genes. Correlation analysis showed that the prognostic model performs extremely well in predicting OS patient prognosis. We also demonstrated that the independent risk factors for the prognosis of OS patients were tumor primary site, metastatic status, and risk score. Based on these factors, nomograms were constructed for predicting the 3- and 5-year survival rates. Afterward, the investigation of the tumor immune microenvironment (TIME) revealed the vital roles of γδ T-cell and B-cell activation. Drug sensitivity analysis and immune checkpoint analysis identified drugs that have potential application value in OS. Finally, the jumping translocation breakpoint (JTB) gene was selected for experimental validation. JTB silencing suppressed the proliferation, migration, and invasion of OS cells. Therefore, our research suggests that PPS-OS-related genes facilitate the malignant progression of OS and may be employed as prognostic indicators and therapeutic targets in OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Microambiente Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/mortalidade , Osteossarcoma/tratamento farmacológico , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/tratamento farmacológico , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Nomogramas , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células
10.
Hum Genomics ; 18(1): 80, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014455

RESUMO

BACKGROUND: Keloid is a disease characterized by proliferation of fibrous tissue after the healing of skin tissue, which seriously affects the daily life of patients. However, the clinical treatment of keloids still has limitations, that is, it is not effective in controlling keloids, resulting in a high recurrence rate. Thus, it is urgent to identify new signatures to improve the diagnosis and treatment of keloids. METHOD: Bulk RNA seq and scRNA seq data were downloaded from the GEO database. First, we used WGCNA and MEGENA to co-identify keloid/immune-related DEGs. Subsequently, we used three machine learning algorithms (Randomforest, SVM-RFE, and LASSO) to identify hub immune-related genes of keloid (KHIGs) and investigated the heterogeneous expression of KHIGs during fibroblast subpopulation differentiation using scRNA-seq. Finally, we used HE and Masson staining, quantitative reverse transcription-PCR, western blotting, immunohistochemical, and Immunofluorescent assay to investigate the dysregulated expression and the mechanism of retinoic acid in keloids. RESULTS: In the present study, we identified PTGFR, RBP5, and LIF as KHIGs and validated their diagnostic performance. Subsequently, we constructed a novel artificial neural network molecular diagnostic model based on the transcriptome pattern of KHIGs, which is expected to break through the current dilemma faced by molecular diagnosis of keloids in the clinic. Meanwhile, the constructed IG score can also effectively predict keloid risk, which provides a new strategy for keloid prevention. Additionally, we observed that KHIGs were also heterogeneously expressed in the constructed differentiation trajectories of fibroblast subtypes, which may affect the differentiation of fibroblast subtypes and thus lead to dysregulation of the immune microenvironment in keloids. Finally, we found that retinoic acid may treat or alleviate keloids by inhibiting RBP5 to differentiate pro-inflammatory fibroblasts (PIF) to mesenchymal fibroblasts (MF), which further reduces collagen secretion. CONCLUSION: In summary, the present study provides novel immune signatures (PTGFR, RBP5, and LIF) for keloid diagnosis and treatment, and identifies retinoic acid as potential anti-keloid drugs. More importantly, we provide a new perspective for understanding the interactions between different fibroblast subtypes in keloids and the remodeling of their immune microenvironment.


Assuntos
Queloide , RNA-Seq , Queloide/genética , Queloide/diagnóstico , Queloide/patologia , Queloide/imunologia , Queloide/tratamento farmacológico , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/imunologia , Redes Reguladoras de Genes , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Análise de Célula Única/métodos , Diferenciação Celular/genética , Análise de Sequência de RNA/métodos , Aprendizado de Máquina , Análise da Expressão Gênica de Célula Única
11.
Aging (Albany NY) ; 162024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39033778

RESUMO

BACKGROUND: Bladder cancer (BLCA) is a highly aggressive and heterogeneous disease, posing challenges for diagnosis and treatment. Cancer immunotherapy has recently emerged as a promising option for patients with advanced and drug-resistant cancers. Fibroblasts, a significant component of the tumor microenvironment, play a crucial role in tumor progression, but their precise function in BLCA remains uncertain. METHODS: Single-cell RNA sequencing (scRNA-seq) data for BLCA were obtained from the Gene Expression Omnibus database. The R package "Seurat" was used for processing scRNA-seq data, with uniform manifold approximation and projection (UMAP) for downscaling and cluster identification. The FindAllMarkers function identified marker genes for each cluster. Differentially expressed genes influencing overall survival (OS) of BLCA patients were identified using the limma package. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between high- and low-risk groups were investigated. RT-qPCR and immunohistochemistry validated the expression of prognostic genes. RESULTS: Fibroblast marker genes identified three molecular subtypes in the testing set. A prognostic signature comprising ten genes stratified BLCA patients into high- and low-score groups. This signature was validated in one internal and two external validation sets. High-score patients exhibited increased immune cell infiltration, elevated chemokine expression, and enhanced immune checkpoint expression but had poorer OS and a reduced response to immunotherapy. Six sensitive anti-tumor drugs were identified for the high-score group. RT-qPCR and immunohistochemistry showed that CERCAM, TM4SF1, FN1, ANXA1, and LOX were highly expressed, while EMP1, HEYL, FBN1, and SLC2A3 were downregulated in BLCA. CONCLUSION: A novel fibroblast marker gene-based signature was established, providing robust predictions of survival and immunotherapeutic response in BLCA patients.

12.
CNS Neurosci Ther ; 30(7): e14850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021287

RESUMO

INTRODUCTION: Glioma is the most frequent and lethal form of primary brain tumor. The molecular mechanism of oncogenesis and progression of glioma still remains unclear, rendering the therapeutic effect of conventional radiotherapy, chemotherapy, and surgical resection insufficient. In this study, we sought to explore the function of HEC1 (highly expressed in cancer 1) in glioma; a component of the NDC80 complex in glioma is crucial in the regulation of kinetochore. METHODS: Bulk RNA and scRNA-seq analyses were used to infer HEC1 function, and in vitro experiments validated its function. RESULTS: HEC1 overexpression was observed in glioma and was indicative of poor prognosis and malignant clinical features, which was confirmed in human glioma tissues. High HEC1 expression was correlated with more active cell cycle, DNA-associated activities, and the formation of immunosuppressive tumor microenvironment, including interaction with immune cells, and correlated strongly with infiltrating immune cells and enhanced expression of immune checkpoints. In vitro experiments and RNA-seq further confirmed the role of HEC1 in promoting cell proliferation, and the expression of DNA replication and repair pathways in glioma. Coculture assay confirmed that HEC1 promotes microglial migration and the transformation of M1 phenotype macrophage to M2 phenotype. CONCLUSION: Altogether, these findings demonstrate that HEC1 may be a potential prognostic marker and an immunotherapeutic target in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Macrófagos , RNA-Seq , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Prognóstico , Macrófagos/metabolismo , Análise de Célula Única , Masculino , Feminino , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pessoa de Meia-Idade , Proliferação de Células , Análise da Expressão Gênica de Célula Única , Proteínas do Citoesqueleto
13.
Immun Ageing ; 21(1): 48, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026350

RESUMO

BACKGROUND: Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS: Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS: This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.

14.
Biochim Biophys Acta Mol Basis Dis ; : 167344, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004380

RESUMO

The complex pathology of mild traumatic brain injury (mTBI) is a main contributor to the difficulties in achieving a successful therapeutic regimen. Thyroxine (T4) administration has been shown to prevent the cognitive impairments induced by mTBI in mice but the mechanism is poorly understood. To understand the underlying mechanism, we carried out a single cell transcriptomic study to investigate the spatiotemporal effects of T4 on individual cell types in the hippocampus and frontal cortex at three post-injury stages in a mouse model of mTBI. We found that T4 treatment altered the proportions and transcriptomes of numerous cell types across tissues and timepoints, particularly oligodendrocytes, astrocytes, and microglia, which are crucial for injury repair. T4 also reversed the expression of mTBI-affected genes such as Ttr, mt-Rnr2, Ggn12, Malat1, Gnaq, and Myo3a, as well as numerous pathways such as cell/energy/iron metabolism, immune response, nervous system, and cytoskeleton-related pathways. Cell-type specific network modeling revealed that T4 mitigated select mTBI-perturbed dynamic shifts in subnetworks related to cell cycle, stress response, and RNA processing in oligodendrocytes. Cross cell-type ligand-receptor networks revealed the roles of App, Hmgb1, Fn1, and Tnf in mTBI, with the latter two ligands having been previously identified as TBI network hubs. mTBI and/or T4 signature genes were enriched for human genome-wide association study (GWAS) candidate genes for cognitive, psychiatric and neurodegenerative disorders related to mTBI. Our systems-level single cell analysis elucidated the temporal and spatial dynamic reprogramming of cell-type specific genes, pathways, and networks, as well as cell-cell communications as the mechanisms through which T4 mitigates cognitive dysfunction induced by mTBI.

15.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005368

RESUMO

Gene co-expression provides crucial insights into biological functions, however, there is a lack of exploratory analysis tools for localized gene co-expression in large-scale datasets. We present GeneSurfer, an interactive interface designed to explore localized transcriptome-wide gene co-expression patterns in the 3D spatial domain. Key features of GeneSurfer include transcriptome-wide gene filtering and gene clustering based on spatial local co-expression within transcriptomically similar cells, multi-slice 3D rendering of average expression of gene clusters, and on-the-fly Gene Ontology term annotation of co-expressed gene sets. Additionally, GeneSurfer offers multiple linked views for investigating individual genes or gene co-expression in the spatial domain at each exploration stage. Demonstrating its utility with both spatial transcriptomics and single-cell RNA sequencing data from the Allen Brain Cell Atlas, GeneSurfer effectively identifies and annotates localized transcriptome-wide co-expression, providing biological insights and facilitating hypothesis generation and validation.

16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000031

RESUMO

In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM.


Assuntos
Espermatogênese , Testículo , Transcriptoma , Humanos , Espermatogênese/genética , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Espermatogônias/metabolismo , Espermatogônias/citologia , Análise de Célula Única/métodos
17.
Immunity ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964332

RESUMO

The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge. Compositional analysis revealed restricted infection to the respiratory mucosa with stepwise changes in immune and epithelial cell subsets and states. We identified and characterized a rare subset of Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells, which concurrently increased with tissue-resident memory T (TRM)-like cells. Proportionality analysis, cell-cell communication inference, and microscopy underscored the CXCL16-CXCR6 axis between KNIIFE and TRM cells. Secondary influenza challenge induced accelerated and coordinated myeloid and lymphoid responses without epithelial proliferation. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses.

18.
Res Sq ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38978578

RESUMO

Cell-type identification is the most crucial step in single cell RNA-seq (scRNA-seq) data analysis, for which the supervised cell-type identification method is a desired solution due to the accuracy and efficiency. The performance of such methods is highly dependent on the quality of the reference data. Even though there are many supervised cell-type identification tools, there is no method for selecting and constructing reference data. Here we develop Target-Oriented Reference Construction (TORC), a widely applicable strategy for constructing reference given target dataset in scRNA-seq supervised cell-type identification. TORC alleviates the differences in data distribution and cell-type composition between reference and target. Extensive benchmarks on simulated and real data analyses demonstrate consistent improvements in cell-type identification from TORC. TORC is freely available at https://github.com/weix21/TORC.

20.
Front Immunol ; 15: 1392940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015576

RESUMO

As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Glicosilfosfatidilinositóis , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Feminino , Glicosilfosfatidilinositóis/metabolismo , Prognóstico , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Exaustão das Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...