Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947268

RESUMO

Tendons transmit the muscle contraction forces to bones and drive joint movement throughout life. While extensive research have indicated the essentiality of mechanical forces on tendon development, a comprehensive understanding of the fundamental role of mechanical forces still needs to be impaerted. This scoping review aimed to summarize the current knowledge about the role of mechanical forces during the tendon developmental phase. The electronic database search using PubMed, performed in May 2023, yielded 651 articles, of which 16 met the prespecified inclusion criteria. We summarized and divided the methods to reduce the mechanical force into three groups: loss of muscle, muscle dysfunction, and weight-bearing regulation. In contrast, there were few studies to analyze the increased mechanical force model. Most studies suggested that mechanical force has some roles in tendon development in the embryo to postnatal phase. However, we identified species variability and methodological heterogeneity to modulate mechanical force. To establish a comprehensive understanding, methodological commonality to modulate the mechanical force is needed in this field. Additionally, summarizing chronological changes in developmental processes across animal species helps to understand the essence of developmental tendon mechanobiology. We expect that the findings summarized in the current review serve as a groundwork for future study in the fields of tendon developmantal biology and mechanobiology.

2.
Biochem Biophys Res Commun ; 676: 84-90, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499368

RESUMO

Tendons and their attachment sites to bone, fibrocartilaginous tissues, have poor self-repair capacity when they rupture, and have risks of retear even after surgical repair. Thus, defining mechanisms underlying their repair is required in order to stimulate tendon repairing capacity. Here we used a rat surgical rotator cuff tear repair model and identified cells expressing the transcription factors Scleraxis (Scx) and SRY-box 9 (Sox9) as playing a crucial role in rotator cuff tendon-to-bone repair. Given the challenges of establishing stably reproducible models of surgical rotator cuff tear repair in mice, we newly established Scx-GFP transgenic rats in which Scx expression can be monitored by GFP. We observed tissue-specific GFP expression along tendons in developing ScxGFP transgenic rats and were able to successfully monitor tissue-specific Scx expression based on GFP signals. Among 3-, 6-, and 12-week-old ScxGFP rats, Scx+/Sox9+ cells were most abundant in 3-week-old rats near the site of humerus bone attachment to the rotator cuff tendon, while we observed significantly fewer cells in the same area in 6- or 12-week-old rats. We then applied a rotator cuff repair model using ScxGFP rats and observed the largest number of Scx+/Sox9+ cells at postoperative repair sites of 3-week-old relative to 6- or 12-week-old rats. Tendons attach to bone via fibrocartilaginous tissue, and cartilage-like tissue was seen at repair sites of 3-week-old but not 6- or 12-week-old rats during postoperative evaluation. Our findings suggest that Scx+/Sox9+ cells may function in rotator cuff repair, and that ScxGFP rats could serve as useful tools to develop therapies to promote rotator cuff repair by enabling analysis of these activities.


Assuntos
Lesões do Manguito Rotador , Ratos , Camundongos , Animais , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/metabolismo , Ratos Transgênicos , Manguito Rotador/metabolismo , Manguito Rotador/cirurgia , Células-Tronco/metabolismo , Tendões/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37246520

RESUMO

Movement of the vertebrate body is supported by the connection of muscle, tendon and bone. Each skeletal muscle in the vertebrate body has a unique shape and attachment site; however, the mechanism that ensures reproducible muscle patterning is incompletely understood. In this study, we conducted targeted cell ablation using scleraxis (Scx)-Cre to examine the role of Scx-lineage cells in muscle morphogenesis and attachment in mouse embryos. We found that muscle bundle shapes and attachment sites were significantly altered in embryos with Scx-lineage cell ablation. Muscles in the forelimb showed impaired bundle separation and limb girdle muscles distally dislocated from their insertion sites. Scx-lineage cells were required for post-fusion myofiber morphology, but not for the initial segregation of myoblasts in the limb bud. Furthermore, muscles could change their attachment site, even after formation of the insertion. Lineage tracing suggested that the muscle patterning defect was primarily attributed to the reduction of tendon/ligament cells. Our study demonstrates an essential role of Scx-lineage cells in the reproducibility of skeletal muscle attachment, in turn revealing a previously unappreciated tissue-tissue interaction in musculoskeletal morphogenesis.


Assuntos
Osso e Ossos , Tendões , Camundongos , Animais , Reprodutibilidade dos Testes , Membro Anterior , Músculo Esquelético , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
4.
Front Cell Dev Biol ; 11: 1049131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910145

RESUMO

RAB23 is a small GTPase which functions at the plasma membrane to regulate growth factor signaling. Mutations in RAB23 cause Carpenter syndrome, a condition that affects normal organogenesis and patterning. In this study, we investigate the role of RAB23 in musculoskeletal development and show that it is required for patella bone formation and for the maintenance of tendon progenitors. The patella is the largest sesamoid bone in mammals and plays a critical role during movement by providing structural and mechanical support to the knee. Rab23 -/- mice fail to form a patella and normal knee joint. The patella is formed from Sox9 and scleraxis (Scx) double-positive chondroprogenitor cells. We show that RAB23 is required for the specification of SOX9 and scleraxis double-positive patella chondroprogenitors during the formation of patella anlagen and the subsequent establishment of patellofemoral joint. We find that scleraxis and SOX9 expression are disrupted in Rab23 -/- mice, and as a result, development of the quadriceps tendons, cruciate ligaments, patella tendons, and entheses is either abnormal or lost. TGFß-BMP signaling is known to regulate patella initiation and patella progenitor differentiation and growth. We find that the expression of TGFßR2, BMPR1, BMP4, and pSmad are barely detectable in the future patella site and in the rudimentary tendons and ligaments around the patellofemoral joint in Rab23 -/- mice. Also, we show that GLI1, SOX9, and scleraxis, which regulate entheses establishment and maturation, are weakly expressed in Rab23 -/- mice. Further analysis of the skeletal phenotype of Rab23 -/- mice showed a close resemblance to that of Tgfß2 -/- mice, highlighting a possible role for RAB23 in regulating TGFß superfamily signaling.

5.
J Orthop Res ; 41(10): 2205-2220, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36961351

RESUMO

Tendons and ligaments have a poor innate healing capacity, yet account for 50% of musculoskeletal injuries in the United States. Full structure and function restoration postinjury remains an unmet clinical need. This study aimed to assess the application of novel three dimensional (3D) printed scaffolds and induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) overexpressing the transcription factor Scleraxis (SCX, iMSCSCX+ ) as a new strategy for tendon defect repair. The polycaprolactone (PCL) scaffolds were fabricated by extrusion through a patterned nozzle or conventional round nozzle. Scaffolds were seeded with iMSCSCX+ and outcomes were assessed in vitro via gene expression analysis and immunofluorescence. In vivo, rat Achilles tendon defects were repaired with iMSCSCX+ -seeded microgrooved scaffolds, microgrooved scaffolds only, or suture only and assessed via gait, gene expression, biomechanical testing, histology, and immunofluorescence. iMSCSCX+ -seeded on microgrooved scaffolds showed upregulation of tendon markers and increased organization and linearity of cells compared to non-patterned scaffolds in vitro. In vivo gait analysis showed improvement in the Scaffold + iMSCSCX+ -treated group compared to the controls. Tensile testing of the tendons demonstrated improved biomechanical properties of the Scaffold + iMSCSCX+ group compared with the controls. Histology and immunofluorescence demonstrated more regular tissue formation in the Scaffold + iMSCSCX+ group. This study demonstrates the potential of 3D-printed scaffolds with cell-instructive surface topography seeded with iMSCSCX+ as an approach to tendon defect repair. Further studies of cell-scaffold constructs can potentially revolutionize tendon reconstruction by advancing the application of 3D printing-based technologies toward patient-specific therapies that improve healing and functional outcomes at both the cellular and tissue level.


Assuntos
Tendão do Calcâneo , Células-Tronco Pluripotentes Induzidas , Ratos , Animais , Tenócitos , Cicatrização , Impressão Tridimensional , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Regeneração
6.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656751

RESUMO

Aged tendons have disrupted homeostasis, increased injury risk, and impaired healing capacity. Understanding mechanisms of homeostatic disruption is crucial for developing therapeutics to retain tendon health through the lifespan. Here, we developed a novel model of accelerated tendon extracellular matrix (ECM) aging via depletion of Scleraxis-lineage cells in young mice (Scx-DTR). Scx-DTR recapitulates many aspects of tendon aging including comparable declines in cellularity, alterations in ECM structure, organization, and composition. Single-cell RNA sequencing demonstrated a conserved decline in tenocytes associated with ECM biosynthesis in aged and Scx-DTR tendons, identifying the requirement for Scleraxis-lineage cells during homeostasis. However, the remaining cells in aged and Scx-DTR tendons demonstrate functional divergence. Aged tenocytes become pro-inflammatory and lose proteostasis. In contrast, tenocytes from Scx-DTR tendons demonstrate enhanced remodeling capacity. Collectively, this study defines Scx-DTR as a novel model of accelerated tendon ECM aging and identifies novel biological intervention points to maintain tendon function through the lifespan.


Assuntos
Matriz Extracelular , Tendões , Camundongos , Animais , Matriz Extracelular/genética , Envelhecimento , Homeostase , Fenótipo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
Life (Basel) ; 12(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431001

RESUMO

Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.

8.
Cell Rep ; 41(8): 111706, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417854

RESUMO

Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined. In the present study, we combine lineage tracing of adult Scleraxis-lineage cells with spatial transcriptomic profiling to define the overarching molecular programs that govern tendon healing and cell-fate decisions. Pseudotime analysis identified three fibroblast trajectories (synthetic, fibrotic, and reactive) and key transcription factors regulating these fate-switching decisions, including the progression of adult Scleraxis-lineage cells through the reactive trajectory. Collectively, this resource defines the molecular mechanisms that coordinate the temporo-spatial healing phenotype, which can be leveraged to inform therapeutic candidate selection.


Assuntos
Cicatriz , Tendões , Animais , Camundongos , Cicatrização , Diferenciação Celular , Fibroblastos
9.
Stem Cells Transl Med ; 11(8): 876-888, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35758541

RESUMO

Heterotopic ossification (HO) is a pathologic process characterized by the formation of bone tissue in extraskeletal locations. The hip is a common location of HO, especially as a complication of arthroplasty. Here, we devise a first-of-its-kind mouse model of post-surgical hip HO and validate expected cell sources of HO using several HO progenitor cell reporter lines. To induce HO, an anterolateral surgical approach to the hip was used, followed by disclocation and acetabular reaming. Animals were analyzed with high-resolution roentgenograms and micro-computed tomography, conventional histology, immunohistochemistry, and assessments of fluorescent reporter activity. All the treated animals' developed periarticular HO with an anatomical distribution similar to human patients after arthroplasty. Heterotopic bone was found in periosteal, inter/intramuscular, and intracapsular locations. Further, the use of either PDGFRα or scleraxis (Scx) reporter mice demonstrated that both cell types gave rise to periarticular HO in this model. In summary, acetabular reaming reproducibly induces periarticular HO in the mouse reproducing human disease, and with defined mesenchymal cellular contributors similar to other experimental HO models. This protocol may be used in the future for further detailing of the cellular and molecular mediators of post-surgical HO, as well as the screening of new therapies.


Assuntos
Artroplastia de Quadril , Células-Tronco Mesenquimais , Ossificação Heterotópica , Animais , Artroplastia/efeitos adversos , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/métodos , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Ossificação Heterotópica/patologia , Células-Tronco/patologia , Microtomografia por Raio-X/efeitos adversos
10.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163616

RESUMO

Calebin A (CA) is one of the active constituents of turmeric and has anti-inflammatory and antioxidant effects. Excessive inflammation and cell apoptosis are the main causes of tendinitis and tendinopathies. However, the role of CA in tendinitis is still unclear and needs to be studied in detail. Tenocytes in monolayer or 3D-alginate cultures in the multicellular tendinitis microenvironment (fibroblast cells) with T-lymphocytes (TN-ME) or with TNF-α or TNF-ß, were kept without treatment or treated with CA to study their range of actions in inflammation. We determined that CA blocked TNF-ß-, similar to TNF-α-induced adhesiveness of T-lymphocytes to tenocytes. Moreover, immunofluorescence and immunoblotting showed that CA, similar to BMS-345541 (specific IKK-inhibitor), suppressed T-lymphocytes, or the TNF-α- or TNF-ß-induced down-regulation of Collagen I, Tenomodulin, tenocyte-specific transcription factor (Scleraxis) and the up-regulation of NF-κB phosphorylation; thus, its translocation to the nucleus as well as various NF-κB-regulated proteins was implicated in inflammatory and degradative processes. Furthermore, CA significantly suppressed T-lymphocyte-induced signaling, similar to TNF-ß-induced signaling, and NF-κB activation by inhibiting the phosphorylation and degradation of IκBα (an NF-κB inhibitor) and IκB-kinase activity. Finally, inflammatory TN-ME induced the functional linkage between NF-κB and Scleraxis, proposing that a synergistic interaction between the two transcription factors is required for the initiation of tendinitis, whereas CA strongly attenuated this linkage and subsequent inflammation. For the first time, we suggest that CA modulates TN-ME-promoted inflammation in tenocytes, at least in part, via NF-κB/Scleraxis signaling. Thus, CA seems to be a potential bioactive compound for the prevention and treatment of tendinitis.


Assuntos
Cinamatos/farmacologia , Inflamação , Monoterpenos/farmacologia , NF-kappa B/metabolismo , Tendinopatia/tratamento farmacológico , Tenócitos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cinamatos/uso terapêutico , Curcumina/química , Humanos , Células Jurkat , Monoterpenos/uso terapêutico , Transdução de Sinais , Tendinopatia/metabolismo , Tenócitos/metabolismo
11.
Stem Cell Reports ; 16(12): 2942-2957, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34822771

RESUMO

Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFß) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFß signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFß signaling in cell recruitment, providing insights that may support improvements in tendon repair.


Assuntos
Transdução de Sinais , Células-Tronco/metabolismo , Tendões/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células Clonais , Proteínas de Fluorescência Verde/metabolismo , Integrases/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Tendões/ultraestrutura , Fatores de Tempo
12.
Transgenic Res ; 30(5): 663-674, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34304368

RESUMO

Herein, we investigate the high incidence of umbilical hernia and tippy-toe standing and their underlying changes in gene expression and proliferation in myostatin knockout (MSTN-/-) pigs. Thirty-six male MSTN-/- pigs were generated by somatic cell nuclear transfer (SCNT). These pigs presented a considerably high incidence of tippy-toe standing and umbilical hernia (69.4% and 61.1%, respectively). The tendon to body weight ratio was significantly lower than wild-type pigs (0.202 ± 0.017 vs 0.250 ± 0.004, respectively). The crimp length of the MSTN-/- tendon was significantly longer than that of wild-type pigs. The expression of MSTN and the activin type IIB (ACVR2B) was detected in the tendon and linea alba of MSTN-/- pigs. MSTN treatment significantly increased the phosphorylation of Smad2/3 in both tendon and linea alba fibroblasts. Type I collagen (Col1A) and Scleraxis (Scx) expression levels in the tendon and linea alba of MSTN-/- pigs were significantly lower than those in wild-type in vivo, whereas and cyclin-dependent kinase inhibitor 1 (p21) expression levels were higher. Treatment of tendon and linea alba fibroblasts with recombinant MSTN increased Col1A and Scx and decreased p21 expression in vivo. Moreover, there was a significant increase in fibroblast proliferation after treatment. The results indicated that MSTN regulates collagen expression and proliferation in tendon and linea alba fibroblasts; thus, MSTN deficiency causes collagen-related pathological features in MSTN-/- pigs. Hence, MSTN could be used as a therapeutic target for treating UH and tendon abnormalities.


Assuntos
Hérnia Umbilical , Miostatina , Animais , Colágeno/genética , Hérnia Umbilical/genética , Masculino , Músculo Esquelético , Miostatina/genética , Técnicas de Transferência Nuclear , Suínos , Dedos do Pé
13.
Histochem Cell Biol ; 156(2): 123-132, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33966129

RESUMO

The sclera is an ocular tissue rich of collagenous extracellular matrix, which is built up and maintained by relatively few, still poorly characterized fibroblast-like cells. The aims of this study are to add to the characterization of scleral fibroblasts and to examine the reaction of these fibroblasts to inflammatory stimulation in an ex vivo organotypic model. Scleras of scleraxis-GFP (SCX-GFP) mice were analyzed using immunohistochemistry and qRT-PCR for the expression of the tendon cell associated marker genes scleraxis (SCX), mohawk and tenomodulin. In organotypic tissue culture, explanted scleras of adult scleraxis GFP reporter mice were exposed to 10 ng/ml recombinant interleukin 1-ß (IL1-ß) and IL1-ß in combination with dexamethasone. The tissue was then analyzed by immunofluorescence staining of the inflammation- and fibrosis-associated proteins IL6, COX-2, iNOS, connective tissue growth factor, MMP2, MMP3, and MMP13 as well as for collagen fibre degradation using a Collagen Hybridizing Peptide (CHP) binding assay. The mouse sclera displayed a strong expression of scleraxis promoter-driven GFP, indicating a tendon cell-like phenotype, as well as expression of scleraxis, tenomodulin and mohawk mRNA. Upon IL1-ß stimulation, SCX-GFP+ cells significantly upregulated the expression of all proteins analysed. Moreover, IL1-ß stimulation resulted in significant collagen degradation. Adding the corticosteroid dexamethasone significantly reduced the response to IL1-ß stimulation. Collagen degradation was significantly enhanced in the IL1-ß group. Dexamethasone demonstrated a significant rescue effect. This work provides insights into the characteristics of scleral cells and establishes an ex vivo model of scleral inflammation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fibroblastos/metabolismo , Inflamação/metabolismo , Esclera/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibroblastos/patologia , Proteínas de Fluorescência Verde/análise , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclera/patologia
14.
J Biol Chem ; 297(1): 100819, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029590

RESUMO

Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal-regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active ß1-integrin-containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp-mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5ß1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.


Assuntos
Movimento Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Homeostase/efeitos dos fármacos , Integrina beta1/metabolismo , Pseudópodes/metabolismo , Tendões/citologia , Envelhecimento , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Pseudópodes/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tenócitos/citologia , Tenócitos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Bone ; 149: 115969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892176

RESUMO

During tooth movement in orthodontic treatment, bone formation and resorption occur on the tension and compression sides of the alveolar bone, respectively. Although the bone formation activity increases in the periodontal ligament (PDL) on the tension side, the PDL itself is not ossified and maintains its homeostasis, indicating that there are negative regulators of bone formation in the PDL. Our previous report suggested that scleraxis (Scx) has an inhibitory effect on ossification of the PDL on the tension side through the suppression of calcified extracellular matrix formation. However, the molecular biological mechanisms of Scx-modulated inhibition of ossification in the tensioned PDL are not fully understood. The aim of the present study is to clarify the inhibitory role of Scx in osteoblast differentiation of PDL cells and its underlying mechanism. Our in vivo experiment using a mouse experimental tooth movement model showed that Scx expression was increased during early response of the PDL to tensile force. Scx knockdown upregulated expression of alkaline phosphatase, an early osteoblast differentiation marker, in the tensile force-loaded PDL cells in vitro. Transforming growth factor (TGF)-ß1-Smad3 signaling in the PDL was activated by tensile force and inhibitors of TGF-ß receptor and Smad3 suppressed the tensile force-induced Scx expression in PDL cells. Tensile force induced ephrin A2 (Efna2) expression in the PDL and Efna2 knockdown upregulated alkaline phosphatase expression in PDL cells under tensile force loading. Scx knockdown eliminated the tensile force-induced Efna2 expression in PDL cells. These findings suggest that the TGF-ß1-Scx-Efna2 axis is a novel molecular mechanism that negatively regulates the tensile force-induced osteoblast differentiation of PDL cells.


Assuntos
Efrina-A2 , Fator de Crescimento Transformador beta1 , Diferenciação Celular , Células Cultivadas , Ligamentos , Osteoblastos , Osteogênese , Ligamento Periodontal , Técnicas de Movimentação Dentária
16.
Elife ; 102021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480357

RESUMO

Despite the requirement for Scleraxis-lineage (ScxLin) cells during tendon development, the function of ScxLin cells during adult tendon repair, post-natal growth, and adult homeostasis have not been defined. Therefore, we inducibly depleted ScxLin cells (ScxLinDTR) prior to tendon injury and repair surgery and hypothesized that ScxLinDTR mice would exhibit functionally deficient healing compared to wild-type littermates. Surprisingly, depletion of ScxLin cells resulted in increased biomechanical properties without impairments in gliding function at 28 days post-repair, indicative of regeneration. RNA sequencing of day 28 post-repair tendons highlighted differences in matrix-related genes, cell motility, cytoskeletal organization, and metabolism. We also utilized ScxLinDTR mice to define the effects on post-natal tendon growth and adult tendon homeostasis and discovered that adult ScxLin cell depletion resulted in altered tendon collagen fibril diameter, density, and dispersion. Collectively, these findings enhance our fundamental understanding of tendon cell localization, function, and fate during healing, growth, and homeostasis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Homeostase , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Cicatrização , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Feminino , Masculino , Camundongos
17.
Bone ; 142: 115687, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33059101

RESUMO

It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth. Our data showed a progressive differentiation of Scx lineage cells started at tendon and the fibrous layer, to cells at the prechondroblasts (Sox9 -/Col I +), and then to cells at the chondrocytic layer (Sox9 +/Col I -). Importantly, the Scx + chondrocytes remained as "permanent" chondrocytes to maintain cartilage mass with no further cell trandifferentiation to bone cells. This notion was substantiated in an assessment of these cells in Dmp1 -null mice (a hypophosphatemic rickets model), where there was a significant increase in the number of Scx lineage cells in response to hypophosphatemia. In addition, we showed the origin of disc, which is derived from Scx + cells. Thus, we propose Scx lineage cells play an important role in TMJ postnatal growth by forming the disc and a new subset of Scx + chondrocytes that do not undergo osteogenesis as the Scx - chondrocytes and are sensitive to the level of phosphorous.


Assuntos
Condrócitos , Tendões , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas da Matriz Extracelular , Camundongos , Camundongos Knockout , Articulação Temporomandibular
18.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218011

RESUMO

Defining the best combination of cells and biomaterials is a key challenge for the development of tendon tissue engineering (TE) strategies. Adipose-derived stem cells (ASCs) are ideal candidates for this purpose. In addition, controlled cell-based products adherent to good manufacturing practice (GMP) are required for their clinical scale-up. With this aim, in this study, ASC 3D bioprinting and GMP-compliant tenogenic differentiation were investigated. In detail, primary human ASCs were embedded within a nanofibrillar-cellulose/alginate bioink and 3D-bioprinted into multi-layered square-grid matrices. Bioink viscoelastic properties and scaffold ultrastructural morphology were analyzed by rheology and scanning electron microscopy (SEM). The optimal cell concentration for printing among 3, 6 and 9 × 106 ASC/mL was evaluated in terms of cell viability. ASC morphology was characterized by SEM and F-actin immunostaining. Tenogenic differentiation ability was then evaluated in terms of cell viability, morphology and expression of scleraxis and collagen type III by biochemical induction using BMP-12, TGF-ß3, CTGF and ascorbic acid supplementation (TENO). Pro-inflammatory cytokine release was also assessed. Bioprinted ASCs showed high viability and survival and exhibited a tenocyte-like phenotype after biochemical induction, with no inflammatory response to the bioink. In conclusion, we report a first proof of concept for the clinical scale-up of ASC 3D bioprinting for tendon TE.


Assuntos
Tecido Adiposo/metabolismo , Bioimpressão , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura , Impressão Tridimensional , Células-Tronco/metabolismo , Tenócitos/metabolismo , Tecido Adiposo/citologia , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Células-Tronco/citologia , Tenócitos/citologia
19.
Biomaterials ; 259: 120331, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32836056

RESUMO

We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-ß responsive gene, we investigated the link between mechanotransduction and TGF-ß signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-ß2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-ß target genes SCX, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on micro-topographies, which coincided with higher expression of the TGF-ß type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-ß response. These findings provide novel insights into the convergence of mechanobiology and TGF-ß signaling, which can lead to improved culture protocols and therapeutic applications.


Assuntos
Células-Tronco Mesenquimais , Actinas/metabolismo , Células Cultivadas , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
20.
Mech Dev ; 163: 103635, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32795590

RESUMO

The transcription factor scleraxis (SCX) is expressed throughout tendon development and plays a key role in directing tendon wound healing. However, little is known regarding its role in fetal or young postnatal tendons, stages in development that are known for their enhanced regenerative capabilities. Here we used RNA-sequencing to compare the transcriptome of adult and fetal tenocytes following SCX knockdown. SCX knockdown had a larger effect on gene expression in fetal tenocytes, affecting 477 genes in comparison to the 183 genes affected in adult tenocytes, indicating that scleraxis-dependent processes may differ in these two developmental stages. Gene ontology, network and pathway analysis revealed an overrepresentation of extracellular matrix (ECM) remodelling processes within both comparisons. These included several matrix metalloproteinases, proteoglycans and collagens, some of which were also investigated in SCX knockdown tenocytes from young postnatal foals. Using chromatin immunoprecipitation, we also identified novel genes that SCX differentially interacts with in adult and fetal tenocytes. These results indicate a role for SCX in modulating ECM synthesis and breakdown and provide a useful dataset for further study into SCX gene regulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Matriz Extracelular/genética , Traumatismos dos Tendões/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Animais , Colágeno/genética , Regulação da Expressão Gênica/genética , Cavalos/genética , Cavalos/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA-Seq , Traumatismos dos Tendões/patologia , Tendões/crescimento & desenvolvimento , Tendões/patologia , Tenócitos/metabolismo , Tenócitos/patologia , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...