Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 789
Filtrar
1.
J Environ Manage ; 370: 122486, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278015

RESUMO

Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions. The results revealed that seagrasses in Yifeng Estuary experienced the large proportion of cultivated land and exhibited higher organic carbon content in the 0-20 cm surface sediment layer. Nitrogen-cycling bacteria were predominantly associated with seagrasses from Yifeng Estuary, whereas Vibrio spp. was more prevalent in seagrasses from Liusha Bay. Notably, seagrass Halophia beccarii (YHB) in Yifeng Estuary harbored higher niche breadths for both microbial generalist and specialist compared to Halodule uninervis (LHU) and Halophia ovalis (LHO) from Liusha Bay. Stochastic processes were pivotal in shaping seagrass sediment microbial communities, with a higher immigration rate observed in YHB, suggesting greater microbial turnover in this area. Additionally, YHB sediment presented lower drift and higher dispersal limitation among generalists compared to LHU and LHO, whereas the pattern was reversed among specialists. Specialists were found to play a crucial role in shaping microbial interactions within YHB sediment, with genera Halioglobus identified as keystone species in the network. The specialists were further found to significantly influence microbial ß-diversity in seagrass sediment directly. Overall, our findings illustrated how microbial generalists and specialists were distributed in seagrass sediments in response to land use changes and provided new insights into the potential roles of microbial regulation in degraded seagrass ecosystems.

2.
Sci Total Environ ; 954: 175985, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233073

RESUMO

Microplastic (plastics <5 mm; MP) contamination in the marine environment has gained global attention due to its continuous accumulation and serious threats to ecosystems. This review evaluates patterns of MP accumulation in seagrasses, mangroves, and saltmarshes to provide an integrated view of MP pollution. Since 2011, studies have examined the sources, distribution, characterization, and fate of MPs in these habitats. We found an unequal geographic distribution with most studies conducted in the Northern Hemisphere and in mangroves, which have the highest MP concentrations compared to saltmarshes and seagrass beds, particularly near urban centers and fishing zones. Almost 40 % of the outcomes of our meta-analysis show a higher MP accumulation in vegetated than unvegetated sites. Also, degraded and highly-degraded sites exhibited higher amounts of MPs than less-degraded areas. In addition, secondary MPs are the dominant form, with less dense polymers (polyethylene, polystyrene, and polypropylene) being more abundant and blue, black, and transparent the most common colors. Methodological differences in reporting units, sampling depths, and extraction methods reduce study comparability and increase variability. This review provides a comprehensive understanding of MP research in coastal ecosystems, revealing critical knowledge gaps affecting MP distribution, such as vegetation density, diversity, and hydrodynamics, and emphasizes the need for standardized methodologies for accurate comparisons.

3.
Mar Pollut Bull ; 207: 116908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232413

RESUMO

The increase in climate-related extreme events and ecosystem degradation demands consistent and sustainable climate mitigation efforts. Seagrass playing a key role in nature-based carbon sequestration mitigation strategy. Here, we investigated the role of coral reef connectivity in blue carbon dynamics with seagrass meadows with coral reef connectivity (SC areas) and without coral reef connectivity (SG areas) in Palk Bay, India. The high sediment organic carbon was recorded in SC areas (90.26 ± 25.68 Mg org.C/ha) and lower in SG areas (66.96 ± 12.6 Mg org.C/ha). The maximum above-ground biomass (AGB) was recorded in Syringodium isoetifolium (35.43 ± 8.50) in SC areas and the minimum in Halophila ovalis (7.59 ± 0.90) in SG areas, with a similar trend observed in below-ground biomass (BGB). Our findings highlight the importance of coral reefs in enhancing the blue carbon potential of seagrass ecosystems and underscore the need for integrated conservation and restoration strategies for coral reefs and seagrasses.


Assuntos
Baías , Sequestro de Carbono , Carbono , Recifes de Corais , Ecossistema , Índia , Carbono/análise , Biomassa , Monitoramento Ambiental , Sedimentos Geológicos/química
4.
J Environ Manage ; 369: 122246, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241598

RESUMO

Seagrass meadows are an essential part of the Great Barrier Reef ecosystem, providing various benefits such as filtering nutrients and sediment, serving as a nursery for fish and shellfish, and capturing atmospheric carbon as blue carbon. Understanding the phenotypic plasticity of seagrasses and their ability to acclimate their morphology in response to environ-mental stressors is crucial. Investigating these morphological changes can provide valuable insights into ecosystem health and inform conservation strategies aimed at mitigating seagrass decline. Measuring seagrass growth by measuring morphological parameters such as the length and width of leaves, rhizomes, and roots is essential. The manual process of measuring morphological parameters of seagrass can be time-consuming, inaccurate and costly, so researchers are exploring machine-learning techniques to automate the process. To automate this process, researchers have developed a machine learning model that utilizes image processing and artificial intelligence to measure morphological parameters from digital imagery. The study uses a deep learning model called YOLO-v6 to classify three distinct seagrass object types and determine their dimensions. The results suggest that the proposed model is highly effective, with an average recall of 97.5%, an average precision of 83.7%, and an average f1 score of 90.1%. The model code has been made publicly available on GitHub (https://github.com/sajalhalder/AI-ASMM).


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Ecossistema , Alismatales/anatomia & histologia , Alismatales/crescimento & desenvolvimento
5.
Environ Monit Assess ; 196(9): 775, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093340

RESUMO

Microplastics are fast-emerging as another potential threat to already globally declining seagrass ecosystems, but there is a paucity of in situ surveys showing their accumulations. Here, we surveyed multiple Zostera marina L. meadows in 2020 and 2021 across Massachusetts, USA, for microplastic contamination, as well as identified factors related to patterns of accumulation. We found that microplastics were ubiquitous throughout all sites regardless of proximity to human development, with fibers being the most common microplastic type. In addition, we showed that accumulation of microplastics within seagrass meadows was related to epiphytic cover on leaves, plant morphology, and bulk-density in sediments. The results of this study provide the first in situ baseline microplastic concentrations on Z. marina plants and sediments for the temperate western North Atlantic. Additionally, we identify specific biotic and abiotic factors related to patterns of microplastic accumulation in these ecosystems.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Zosteraceae , Zosteraceae/metabolismo , Massachusetts , Poluentes Químicos da Água/análise , Microplásticos/análise , Sedimentos Geológicos/química , Ecossistema
6.
BMC Biotechnol ; 24(1): 54, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135187

RESUMO

BACKGROUND: Several studies have been reported previously on the bioactivities of different extracts of marine molluscs. Therefore, we decided to evaluate the cytotoxic and antimicrobial activities of S. pharaonis ink as a highly populated species in the Red Sea. We extracted the flavonoids from the ink and analyzed their composition. Then we evaluated systematically the cytotoxic and antimicrobial properties of this extract. A pharmacokinetic study was also conducted using SwissADME to assess the potential of the identified flavonoids and phenolic compounds from the ink extract to be orally active drug candidates. RESULTS: Cytotoxic activity was evaluated against 5 cell lines (MCF7, Hep G2, A549, and Caco2) at different concentrations (0.4 µg/mL, 1.6 µg/mL, 6.3 µg/mL, 25 µg/mL, 100 µg/mL). The viability of examined cells was reduced by the extract in a concentration-dependent manner. The highest cytotoxic effect of the extract was recorded against A549 and Hep G2 cancer cell lines cells with IC50 = 2.873 and 7.1 µg/mL respectively. The mechanistic analysis by flow cytometry of this extract on cell cycle progression and apoptosis induction indicated that the extract arrests the cell cycle at the S phase in Hep G2 and MCF7, while in A549 cell arrest was recorded at G1 phase. However, it causes G1 and S phase arrest in Caco2 cancer cell line. Our data showed that the extract has significant antimicrobial activity against all tested human microbial pathogens. However, the best inhibitory effect was observed against Candida albicans ATCC 10,221 with a minimum inhibitory concentration (MIC) of 1.95 µg/mL. Pharmacokinetic analysis using SwissADME showed that most flavonoids and phenolics compounds have high drug similarity as they satisfy Lipinski's criteria and have WLOGP values below 5.88 and TPSA below 131.6 Å2. CONCLUSION: S. pharaonis ink ethanolic extract showed a promising cytotoxic potency against various cell lines and a remarkable antimicrobial action against different pathogenic microbial strains. S. pharaonis ink is a novel source of important flavonoids that could be used in the future in different applications as a naturally safe and feasible alternative of synthetic drugs.


Assuntos
Anti-Infecciosos , Flavonoides , Fenóis , Humanos , Flavonoides/química , Flavonoides/farmacologia , Fenóis/química , Fenóis/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sepia/química , Linhagem Celular Tumoral , Células CACO-2 , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Células Hep G2 , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
7.
Glob Chang Biol ; 30(8): e17469, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39155748

RESUMO

Marine heatwaves (MHWs), increasing in duration and intensity because of climate change, are now a major threat to marine life and can have lasting effects on the structure and function of ecosystems. However, the responses of marine taxa and ecosystems to MHWs can be highly variable, making predicting and interpreting biological outcomes a challenge. Here, we review how biological responses to MHWs, from individuals to ecosystems, are mediated by fine-scale spatial variability in the coastal marine environment (hereafter, local gradients). Viewing observed responses through a lens of ecological theory, we present a simple framework of three 'resilience processes' (RPs) by which local gradients can influence the responses of marine taxa to MHWs. Local gradients (1) influence the amount of stress directly experienced by individuals, (2) facilitate local adaptation and acclimatization of individuals and populations, and (3) shape community composition which then influences responses to MHWs. We then synthesize known examples of fine-scale gradients that have affected responses of benthic foundation species to MHWs, including kelp forests, coral reefs, and seagrass meadows and link these varying responses to the RPs. We present a series of case studies from various marine ecosystems to illustrate the differential impacts of MHWs mediated by gradients in both temperature and other co-occurring drivers. In many cases, these gradients had large effect sizes with several examples of local gradients causing a 10-fold difference in impacts or more (e.g., survival, coverage). This review highlights the need for high-resolution environmental data to accurately predict and manage the consequences of MHWs in the context of ongoing climate change. While current tools may capture some of these gradients already, we advocate for enhanced monitoring and finer scale integration of local environmental heterogeneity into climate models. This will be essential for developing effective conservation strategies and mitigating future marine biodiversity loss.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos/fisiologia , Recifes de Corais , Animais , Temperatura Alta , Aclimatação
8.
Mar Drugs ; 22(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195481

RESUMO

Enhalus acoroides, a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) and to evaluate the biological properties of these extracts against oxidative stress, diabetes, and obesity through in silico and in vitro analyses. E. acoroides samples were collected from Manado City, Indonesia, and subjected to UAE and MAE. The extracts were analyzed using UHPLC-ESI-MS/MS to identify carotenoids, including ß-carotene, lutein, lycopene, ß-cryptoxanthin, and zeaxanthin. In silico analysis was conducted to predict the compounds' bioactivity, toxicity, and drug-likeness using WAY2DRUG PASS and molecular docking with CB-Dock2. The compounds C3, C4, and C7 demonstrated notable interactions, with key metabolic proteins and microRNAs, further validating their potential therapeutic benefits. In vitro assays evaluated antioxidant activities using DPPH and FRAP assays, antidiabetic properties through α-glucosidase and α-amylase inhibition, and antiobesity effects via lipase inhibition and MTT assay with 3T3-L1 cells. Results indicated that both UAE and MAE extracts exhibited significant antioxidant, antidiabetic, and antiobesity activities. MAE extracts showed higher carotenoid content and greater biological activity compared to UAE extracts. These findings suggest that E. acoroides, mainly when extracted using MAE, has promising potential as a source of natural bioactive compounds for developing marine-based antioxidant, antidiabetic, and antiobesity agents. This study supplements existing literature by providing insights into the efficient extraction methods and the therapeutic potential of E. acoroides carotenoids.


Assuntos
Fármacos Antiobesidade , Antioxidantes , Carotenoides , Hipoglicemiantes , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Carotenoides/farmacologia , Carotenoides/isolamento & purificação , Carotenoides/química , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/química , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação por Computador , Obesidade/tratamento farmacológico , Células 3T3-L1 , Espectrometria de Massas em Tandem , Indonésia , Micro-Ondas , Estresse Oxidativo/efeitos dos fármacos
9.
Mar Pollut Bull ; 207: 116799, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39178521

RESUMO

Seagrass meadows have recently been highlighted as potential hotspots for microplastic and anthropogenic microparticles (APs). This study assessed AP accumulation in shallow sediments vegetated by small-bodied seagrass species (Halodule wrightii, Halophila decipiens, and H. baillonii) and in the adjacent unvegetated area in a tropical estuary on the East Coast of South America, Brazil, over the seasonal cycle. Anthropogenic microparticles were detected in 80 % of the samples, with a mean abundance of 142 ± 140 particles kg-1 dw (N = 80). Particles were predominantly blue (51 %), fiber (73 %), and smaller than 1 mm (80 %). We observed that seagrass sediments retained APs, although no significant variation was observed between seagrass and the unvegetated area, nor between the dry and rainy seasons. A positive correlation was found between sediment grain size and AP abundance. This study represents the first record of AP contamination in seagrasses from the Tropical Southwestern Atlantic bioregion.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Poluentes Químicos da Água , Brasil , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Hydrocharitaceae , Estações do Ano
10.
Biomolecules ; 14(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39199379

RESUMO

Halophila stipulacea (Forsskål and Niebuhr) Ascherson is a small marine seagrass that belongs to the Hydrocharitaceae family. It is native to the Red Sea, Persian Gulf, and Indian Ocean and has successfully invaded the Mediterranean and Caribbean Seas. This article summarizes the pharmacological activities and phytochemical content of H. stipulacea, along with its botanical and ecological characteristics. Studies have shown that H. stipulacea is rich in polyphenols and terpenoids. Additionally, it is rich in proteins, lipids, and carbohydrates, contributing to its nutritional value. Several biological activities are reported by this plant, including antimicrobial, antioxidant, anticancer, anti-inflammatory, anti-metabolic disorders, and anti-osteoclastogenic activities. Further research is needed to validate the efficacy and safety of this plant and to investigate the mechanisms of action underlying the observed effects.


Assuntos
Compostos Fitoquímicos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Humanos , Hydrocharitaceae/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Terpenos/química , Terpenos/farmacologia
11.
Sci Total Environ ; 951: 175702, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39179040

RESUMO

Costal eutrophication leads to increased sulfide levels in sediments, which has been identified as a major cause of the global decline in seagrass beds. The seagrass Thalassia hemprichii, a dominant tropical species in the Indo-Pacific, is facing a potential threat from sulfide, which can be easily reduced from sulfate in porewater under the influence of global climate change and eutrophication. However, its metabolic response and tolerance mechanisms to high sulfide remain unclear. Thus, the current study investigated the physiological responses and programmed metabolic networks of T. hemprichii through a three-week mesocosm experiment, integrating physiology, stable isotope, widely targeted metabolomics, transcriptomics, and microbial diversity assessments. High sulfide reduced the sediment microbial diversity, while increased sediment sulfate reduced bacterial abundance and δ34S. The exposure to sulfide enhanced root δ34S while decreased leaf δ34S in T. hemprichii. High sulfide was shown to inhibit photosynthesis via damaging PSII, which further reduced ATP production. In response, abundant up-regulated differentially expressed genes in energy metabolism, especially in oxidative phosphorylation, were activated to compensate high energy requirement. High sulfide also promoted autophagy by overexpressing the genes related to phagocytosis and phagolysosome. Meanwhile, metabolomic profiling revealed that the contents of many primary metabolites, such as carbohydrates and amino acids, were reduced in both leaves and roots, likely to provide more energy and synthesize stress-responsive secondary metabolites. Genes related to nitrate reduction and transportation were up-regulated to promote N uptake for sulfide detoxification. High sulfide levels specifically enhanced thiamine in roots, while increased jasmonic acid and flavonoid levels in leaves. The distinct differences in metabolism between roots and leaves might be related to sulfide levels and the growth-defense trade-off. Collectively, our work highlights the specific mechanisms underlying the response and tolerance of T. hemprichii to high sulfide, providing new insights into seagrass strategies for resisting sulfide.


Assuntos
Hydrocharitaceae , Redes e Vias Metabólicas , Metaboloma , Sulfetos , Transcriptoma , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Poluentes Químicos da Água , Eutrofização
12.
R Soc Open Sci ; 11(8): 240663, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113773

RESUMO

Pathogen transmission pathways are fundamental to understanding the epidemiology of infectious diseases yet are challenging to estimate in nature, particularly in the ocean. Seagrass wasting disease (SWD), caused by Labyrinthula zosterae, impacts seagrass beds worldwide and is thought to be a contributing factor to declines; however, little is known about natural transmission of SWD. In this study, we used field and laboratory experiments to test SWD transmission pathways and temperature sensitivity. To test transmission modes in nature, we conducted three field experiments out-planting sentinel Zostera marina shoots within and adjacent to natural Z. marina beds (20 ± 5 and 110 ± 5 m from bed edge). Infection rates and severity did not differ among outplant locations, implicating waterborne transmission. The infectious dose of L. zosterae through waterborne exposure was assessed in a controlled laboratory experiment. The dose to 50% disease was 6 cells ml-1 and did not differ with the temperatures tested (7.5°C and 15°C). Our results show L. zosterae is transmissible through water without direct contact with infected plants. Understanding the transmission dynamics of this disease in the context of changing ocean conditions will improve Z. marina protection and restoration in critical coastal habitats worldwide.

13.
J Environ Manage ; 367: 121888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096734

RESUMO

A significant challenge in the integration of ecosystem services into decision-making processes lies in effectively capturing the dynamics of marine socio-ecological systems, including their evolutionary pathways, equilibrium states, and tipping points. This paper explores the evolutionary trajectories of a vital marine ecosystem endemic to the Mediterranean Sea: the Posidonia oceanica seagrass meadows, in response to various drivers of change. A state-and-transition model is employed to assess the ecosystem services provided by P. oceanica across different states defined by selected transitions, such as overfishing, fragmentation, pollution, and invasion by non-native species. To apply this model, scientific expertise is combined with field data generated using the Ecosystem-Based Quality Index to evaluate the conservation status of P. oceanica. This integrated approach allows for the representation of the ecosystem services offered by the meadows across different states, leveraging ecological data. The findings highlight the disproportionate impact on provisioning services, particularly sea urchins and commercial fish production, which suffer the most under various stressors. Notably, when these services decline to critical levels, the meadows cease to provide significant benefits. Finally, a synthesized representation is presented, merging ecological insights with monitoring data, offering a framework that is more accessible to stakeholders and decision-makers.


Assuntos
Alismatales , Conservação dos Recursos Naturais , Ecossistema , Mar Mediterrâneo , Animais
14.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39204098

RESUMO

Seagrasses are marine angiosperms that inhabit tropical and subtropical regions around the world. They play a vital role in marine biodiversity and the ecosystem by providing habitats and food for several marine organisms, stabilizing sediments, and improving water quality. Halodule uninervis from the family Cymodoceaceae has been used in traditional folk medicine for the treatment of many ailments. Additionally, several identified bioactive metabolites have been shown to contribute to its pharmacological activities, including anticancer, anti-inflammatory, and antioxidant. As such, H. uninervis could contribute to the development of novel drugs for various diseases. This review aims to compile the phytochemical composition and pharmacological activities of H. uninervis. Furthermore, details about its botanical characteristics and ecological significance are also discussed. By providing valuable insights into the role of H. uninervis in both the marine ecosystem and biomedicine, this review helps to highlight its potential as a therapeutic agent for future drug discovery and development.

15.
Front Microbiol ; 15: 1449545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206368

RESUMO

Introduction: Seagrass-associated microbial communities play a crucial role in the growth and health of seagrasses. However, like seagrass meadows, seagrass-associated microbial communities are often affected by eutrophication. It remains unclear how eutrophication influences the composition and function of microbial communities associated with different parts of seagrass. Methods: We employed prokaryotic 16S rRNA gene high-throughput sequencing combining microbial community structure analysis and co-occurrence network analysis to investigate variances in microbial community compositions, potential functions and complexities across sediment, seagrass leaves, and seawater within different eutrophic areas of two adjacent seagrass meadows on Hainan Island, China. Results: Our results indicated that microbial diversity on seagrass leaves was significantly lower than in sediment but significantly higher than in seawater. Both sediment and phyllosphere microbial diversity showed no significant difference between the highly eutrophic and less eutrophic sites in each lagoon. However, sediment microbial diversity was higher in the more eutrophic lagoon, while phyllosphere microbial diversity was higher in the less eutrophic lagoon. Heavy eutrophication increased the relative abundance of phyllosphere microorganisms potentially involved in anaerobic metabolic processes, while reducing those responsible for beneficial functions like denitrification. The main factor affecting microbial diversity was organic carbon in seawater and sediment, with high organic carbon levels leading to decreased microbial diversity. The co-occurrence network analysis revealed that heavy eutrophication notably reduced the complexity and internal connections of the phyllosphere microbial community in comparison to the sediment and seawater microbial communities. Furthermore, ternary analysis demonstrated that heavy eutrophication diminished the external connections of the phyllosphere microbial community with the sediment and seawater microbial communities. Conclusion: The pronounced decrease in biodiversity and complexity of the phyllosphere microbial community under eutrophic conditions can lead to greater microbial functional loss, exacerbating seagrass decline. This study emphasizes the significance of phyllosphere microbial communities compared to sediment microbial communities in the conservation and restoration of seagrass meadows under eutrophic conditions.

16.
Front Microbiol ; 15: 1410195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144208

RESUMO

Anthropogenic activities are driving significant changes in coastal ecological environments, increasingly spotlighting microorganisms associated with seagrass bed ecosystems. Labyrinthula is primarily recognized as a saprophytic protist associated with marine detritus, and it also acts as an opportunistic pathogen affecting marine algae, terrestrial plants and mollusks, especially in coastal environments. The genus plays a key role in the decomposition of marine detritus, facilitated by its interactions with diatoms and through the utilization of a diverse array of carbohydrate-active enzymes to decompose seagrass cell walls. However, human activities have significantly influenced the prevalence and severity of seagrass wasting disease (SWD) through factors such as climate warming, increased salinity and ocean acidification. The rise in temperature and salinity, exacerbated by human-induced climate change, has been shown to increase the susceptibility of seagrass to Labyrinthula, highlighting the adaptability of pathogen to environmental stressors. Moreover, the role of seagrass in regulating pathogen load and their immune response to Labyrinthula underscore the complex dynamics within these marine ecosystems. Importantly, the genotype diversity of seagrass hosts, environmental stress factors and the presence of marine organisms such as oysters, can influence the interaction mechanisms between seagrass and Labyrinthula. Besides, these organisms have the potential to both mitigate and facilitate pathogen transmission. The complexity of these interactions and their impacts driven by human activities calls for the development of comprehensive multi-factor models to better understand and manage the conservation and restoration of seagrass beds.

18.
Mar Pollut Bull ; 206: 116672, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047601

RESUMO

Our study explored the lateral export of macroalgae and seagrass to the deep sea of the Northern South China Sea (NSCS). Particulate organic carbon (POC) collected from a depth of 500 m off southwestern Taiwan (station T) and Dongsha Atoll (station K) underwent environmental DNA (eDNA) and stable isotope assays. Metabarcoding using 18S V9 rDNA revealed lateral export of macrophyte detritus in NSCS. At station K, seagrass detritus predominated, while at station T, macroalgae-derived detritus was dominant. The consistency in the stable carbon isotope signature between POC and macrophytes indicates that stable carbon is an ideal bio-indicator for tracking macrophyte detritus destination and transformation after it has been laterally exported. Based on robust scientific methods, these findings provide valuable insights into the lateral export of macrophyte detritus to the deep sea in POC, influenced by habitat species, and shaped by distinct oceanographic physics around NSCS.


Assuntos
Carbono , Ecossistema , Monitoramento Ambiental , Alga Marinha , Alga Marinha/metabolismo , China , Oceanos e Mares
19.
Sci Total Environ ; 949: 174993, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047818

RESUMO

This study introduces a novel concept of 'Adaptively Stacked' Species Distribution Models (AS-SDMs) to predict blue carbon habitat distribution, abundance, carbon stocks, and carbon sequestration potential in Orkney. AS-SDMs are built from Weighted Boosted Regression Trees (WBRTs) that adaptively stack blue carbon sediment thickness, sediment carbon content, and sequestration potential to predicted abundance. A novel method to describe substrate types by relative inputs of mud, sand, and gravel is detailed that better characterises the determining factors of seagrass, maerl, and horse mussel abundance. This study also introduces a novel use of indexes to mitigate double counting issues of mixed species distribution models. Seagrass, maerl, horse mussel, and mixed seagrass and maerl (SGM) habitats are estimated to cover a maximum area of 657 km2 in Orkney, have a total sediment carbon stock of 16 Mt. C, and sequester 6000 t C yr-1. Applying a conservative threshold of 50 % abundance to habitat predictions, six key potential areas of blue carbon offset projects are identified. These areas cover just over 9 km2, have a total carbon stock of 330,000 t C, and sequester 330 t C yr-1. When applied to UK carbon credit value, assuming integration with voluntary markets and compliance with accreditation criteria, the habitats in these areas have a potential value of £24.5 million. If applied as annual values, these areas have carbon stocks with a potential value of £0.93 million yr-1 and a carbon sequestration potential value of £24,000 yr-1.

20.
Proc Biol Sci ; 291(2027): 20241065, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043234

RESUMO

Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Modelos Teóricos , Alismatales/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...