Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
1.
Ann Transl Med ; 12(4): 74, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118956

RESUMO

Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, "epidrugs" (drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and HDACi functions.

2.
Food Sci Biotechnol ; 33(9): 2009-2019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130658

RESUMO

Intricate ecosystem of the human gut microbiome is affected by various environmental factors, genetic makeup of the individual, and diet. Specifically, resistant starch (RS) is indigestible in the small intestine but nourishes the gut microbiota in the colon. Degradation of RS in the gut begins with primary degraders, such as Bifidobacterium adolescentis and Ruminococcus bromii. Recently, new RS degraders, such as Ruminococcoides bili, have been reported. These microorganisms play crucial roles in the transformation of RS into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs are necessary to maintain optimal intestinal health, regulate inflammation, and protect against various illnesses. This review discusses the effects of RS on gut and highlights its complex interactions with gut flora, especially the Ruminococcaceae family.

3.
Mol Neurobiol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134825

RESUMO

Recent insights into Parkinson's disease (PD), a progressive neurodegenerative disorder, suggest a significant influence of the gut microbiome on its pathogenesis and progression through the gut-brain axis. This study integrates 16S rRNA sequencing, high-throughput transcriptomic sequencing, and animal model experiments to explore the molecular mechanisms underpinning the role of gut-brain axis in PD, with a focus on short-chain fatty acids (SCFAs) mediated by the SCFA receptors FFAR2 and FFAR3. Our findings highlighted prominent differences in the gut microbiota composition between PD patients and healthy individuals, particularly in taxa such as Escherichia_Shigella and Bacteroidetes, which potentially impact SCFA levels through secondary metabolite biosynthesis. Notably, fecal microbiota transplantation (FMT) from healthy to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models significantly improved motor function, enhanced dopamine and serotonin levels in the striatum, and increased the number of dopaminergic neurons in the substantia nigra while reducing glial cell activation. This therapeutic effect was associated with increased levels of SCFAs such as acetate, propionate, and butyrate in the gut of MPTP-lesioned mice. Moreover, transcriptomic analyses revealed upregulated expression of FFAR2 and FFAR3 in MPTP-lesioned mice, indicating their crucial role in mediating the benefits of FMT on the central nervous system. These results provide compelling evidence that gut microbiota and SCFAs play a critical role in modulating the gut-brain axis, offering new insights into PD's etiology and potential targets for therapeutic intervention.

4.
J Agric Food Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135376

RESUMO

Ochratoxin A (OTA) is a prevalent mycotoxin found in feed that causes significant kidney injury in animals. Further investigation was needed to devise strategies for treating OTA-induced kidney damage through the gut-kidney axis. Evidence indicates the crucial role of intestinal microbiota in kidney damage development. Inulin, a dietary fiber, protects kidneys by modulating intestinal microbiota and promoting short-chain fatty acid (SCFA) production. However, its precise mechanism in OTA-induced kidney damage remained unclear. In this study, chickens were orally administered OTA and inulin for 2 weeks to investigate inulin's effects on OTA-induced kidney damage and underlying mechanisms. The alteration of intestinal microbiota, SCFAs contents, and SCFA receptors was further analyzed. Results demonstrated that inulin supplementation influenced intestinal microbiota, increased SCFAs production, and mitigated OTA-induced kidney damage in chickens. The importance of microbiota in mediating inulin's renal protection was further confirmed by antibiotic and fecal microbiota transplantation experiments. Additionally, inulin exhibited antioxidant and anti-inflammatory properties, alleviating NLRP3 inflammasome activation and pyroptosis. In summary, inulin protected chickens from OTA-induced kidney damage, which might provide a potential strategy to mitigate the harmful effects of mycotoxins through prebiotics and safeguard renal health.

5.
J Adv Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111622

RESUMO

INTRODUCTION: The accumulation of microbiota-derived trimethylamine N-oxide (TMAO) in the atrium is linked to the development and progression of atrial arrhythmia. Butyrate, a major short-chain fatty acid, plays a crucial role in sustaining intestinal homeostasis and alleviating systemic inflammation, which may reduce atrial arrhythmogenesis. OBJECTIVES: This study explored the roles of butyrate in regulating TMAO-mediated atrial remodeling and arrhythmia. METHODS: Whole-cell patch clamp experiments, Western blotting, and immunocytochemistry were used to analyze electrical activity and signaling, respectively, in TMAO-treated HL-1 atrial myocytes with or without sodium butyrate (SB) administration. Telemetry electrocardiographic recording and echocardiography and Masson's trichrome staining and immunohistochemistry were employed to examine atrial function and histopathology, respectively, in mice treated with TMAO with and without SB administration. RESULTS: Compared with control cells, TMAO-treated HL-1 myocytes exhibited reduced action potential duration (APD), elevated sarcoplasmic reticulum (SR) calcium content, larger L-type calcium current (ICa-L), increased Na+/Ca2+ exchanger (NCX) current, and increased potassium current. However, the combination of SB and TMAO resulted in similar APD, SR calcium content, ICa-L, transient outward potassium current (Ito), and ultrarapid delayed rectifier potassium current (IKur) compared with controls. Additionally, TMAO-treated HL-1 myocytes exhibited increased activation of endoplasmic reticulum (ER) stress signaling, along with increased PKR-like ER stress kinase (PERK)/IRE1α axis activation and expression of phospho-IP3R, NCX, and Kv1.5, compared with controls or HL-1 cells treated with the combination of TMAO and SB. TMAO-treated mice exhibited atrial ectopic beats, impaired atrial function, increased atrial fibrosis, and greater activation of ER stress signaling with PERK/IRE1α axis activation compared with controls and mice treated with TMAO combined with SB. CONCLUSION: TMAO administration led to PERK/IRE1α axis activation, which may increase atrial remodeling and arrhythmogenesis. SB treatment mitigated TMAO-elicited ER stress. This finding suggests that SB administration is a valuable strategy for treating TMAO-induced atrial arrhythmia.

6.
Microb Pathog ; : 106850, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142365

RESUMO

BACKGROUND: Sarcopenia, a hallmark of age-related muscle function decline, significantly impacts elderly physical health. This systematic review aimed to investigate the impact of gut microbiota on sarcopenia. METHODS: Publications up to September 24, 2023 were scrutinized on four databases - PubMed, Web of Science, Cochrane Library, and Embase - using relevant keywords. Non-English papers were disregarded. Data regarding gut microbiota alterations in sarcopenic patients/animal models were collected and examined. RESULTS: Thirteen human and eight animal studies were included. The human studies involved 732 sarcopenic or potentially sarcopenic participants (aged 57-98) and 2559 healthy subjects (aged 54-84). Animal studies encompassed five mouse and three rat experiments. Results indicated an increase in opportunistic pathogens like Enterobacteriaceae, accompanied by changes in several metabolite-related organisms. For example, Bacteroides fluxus related to horse uric acid metabolism exhibited increased abundance. However, Roseburia, Faecalibacterium, Faecalibacterium prausnitzii, Eubacterium retale, Akkermansiaa, Coprococcus, Clostridium_XIVa, Ruminococcaceae, Bacteroides, Clostridium, Eubacterium involved in urolithin A production, and Lactobacillus, Bacteroides, and Clostridium associated with bile acid metabolism displayed decreased abundance. CONCLUSIONS: Age-related sarcopenia and gut microbiota alterations are intricately linked. Short-chain fatty acid metabolism, urolithin A, and bile acid production may be pivotal factors in the gut-muscle axis pathway. Supplementation with beneficial metabolite-associated microorganisms could enhance muscle function, mitigate muscle atrophy, and decelerate sarcopenia progression.

7.
Nutrients ; 16(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39064765

RESUMO

The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/microbiologia , Doenças Metabólicas/terapia , Simbiose , Disbiose , Probióticos/uso terapêutico , Interações entre Hospedeiro e Microrganismos/fisiologia
8.
Gut Pathog ; 16(1): 39, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060944

RESUMO

BACKGROUND: Sulfate-reducing bacteria (SRB) is a potential pathogen usually detected in patients with gastrointestinal diseases. Hydrogen sulfide (H2S), a metabolic byproduct of SRB, was considered the main causative agent that disrupted the morphology and function of gut epithelial cells. Associated study also showed that flagellin from Desulfovibrio vulgaris (DVF), the representative bacterium of the Desulfovibrio genus, could exacerbate colitis due to the interaction of DVF and LRRC19, leading to the secretion of pro-inflammatory cytokines. However, we still have limited understanding about the change of gut microbiota (GM) composition caused by overgrowth of SRB and its exacerbating effects on colitis. RESULTS: In this study, we transplanted D. vulgaris into the mice treated with or without DSS, and set a one-week recovery period to investigate the impact of D. vulgaris on the mice model. The outcomes showed that transplanted D. vulgaris into the normal mice could cause the gut inflammation, disrupt gut barrier and reduce the level of short-chain fatty acids (SCFAs). Moreover, D. vulgaris also significantly augmented DSS-induced colitis by exacerbating the damage of gut barrier and the secretion of inflammatory cytokines, for instance, IL-1ß, iNOS, and TNF-α. Furthermore, results also showed that D. vulgaris could markedly change GM composition, especially decrease the relative abundance of SCFAs-producing bacteria. Additionally, D. vulgaris significantly stimulated the growth of Akkermansia muciniphila probably via its metabolic byproduct, H2S, in vivo. CONCLUSIONS: Collectively, this study indicated that transplantation of D. vulgaris could cause gut inflammation and aggravate the colitis induced by DSS.

9.
Br Poult Sci ; : 1-10, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995214

RESUMO

1. This study was conducted to determine the effects of graded levels of phytase on the performance, egg quality and gut health of white laying hens.2. Treatments consisted of a negative control (NC) diet containing 0.14% available phosphorus (avP), positive control (PC) diet containing 0.35% avP provided via dicalcium phosphate (DCP) and DCP replaced in the PC by with three graded levels of phytase derived from Komagataella phaffii at 500 (PC-500), 750 (PC-750) and 1000 (PC-1000) FTU/kg which provided 0.176%, 0.188% and 0.200% of avP, respectively.3. Egg production, feed intake, feed conversion ratio and jejunal morphometry were negatively affected in NC-fed birds (p < 0.05). Considering the whole period, birds fed a diet supplemented with graded levels of phytase shared the same egg production and feed intake levels with PC birds (p < 0.05). Feed conversion ratio was significantly lowered by 4.9%, 1.6% and 7.6% in hens fed on diets PC-500, PC-750 and PC-1000, respectively compared to those fed the PC (p < 0.05).4. Neither of the dietary treatments affected cracked eggs, dirty eggs, eggshell breaking strength and eggshell thickness. Dietary supplementation of phytase significantly increased villus surface area by 15%, 36% and 40% in PC-500, PC-750 and PC-1000 birds, respectively compared to PC (p < 0.05).5. A significant increase in lactobacillus count was observed in line with increasing the level of phytase (p < 0.05). Dietary treatments had no effect on the caecal coliform or aerobic populations. Furthermore, phytase supplementation significantly increased the concentrations of total caecal short-chain fatty acid (SCFA; p < 0.01).6. In conclusion, along with improving performance parameters, the inclusion of phytase in laying hen diets can ameliorate intestinal morphology and stimulate caecal microflora and increase SCFA concentrations.

10.
Nutrients ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999878

RESUMO

Resveratrol, acting as a prebiotic, and propionate, functioning as a postbiotic, hold promise for preventing hypertension in chronic kidney disease (CKD). Previously, we employed propionate to enhance the bioavailability of resveratrol through esterification, resulting in the production of a resveratrol propionate ester (RPE) mixture. In this study, we purified 3-O-propanoylresveratrol (RPE2) and 3,4'-di-O-propanoylresveratrol (RPE4) and investigated their protective effects in a juvenile rat adenine-induced CKD model. To this end, male Sprague Dawley rats aged three weeks (n = 40) were divided into five groups: control; CKD (rats fed adenine); CKRSV (CKD rats treated with 50 mg/L resveratrol); CDRPE2 (CKD rats treated with 25 mg/L RPE2); and CKRPE4 (CKD rats treated with 25 mg/L RPE 4). RPE2 and PRE4 similarly exhibited blood pressure-lowering effects comparable to those of resveratrol, along with increased nitric oxide (NO) availability. Furthermore, RPE2 and RPE4 positively influenced plasma short-chain fatty acid (SCFA) levels and induced distinct alterations in the gut microbial composition of adenine-fed juvenile rats. The supplementation of RPE2 and RPE4, by restoring NO, elevating SCFAs, and modulating the gut microbiota, holds potential for ameliorating CKD-induced hypertension.


Assuntos
Adenina , Anti-Hipertensivos , Pressão Sanguínea , Suplementos Nutricionais , Microbioma Gastrointestinal , Hipertensão , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Resveratrol , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Resveratrol/farmacologia , Masculino , Adenina/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Ratos , Hipertensão/tratamento farmacológico , Propionatos , Óxido Nítrico/metabolismo , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Dieta
11.
Gut Microbes ; 16(1): 2382324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39069899

RESUMO

The human gut microbiota is a complex community comprising hundreds of species, with a few present in high abundance and the vast majority in low abundance. The biological functions and effects of these low-abundant species on their hosts are not yet fully understood. In this study, we assembled a bacterial consortium (SC-4) consisting of B. paravirosa, C. comes, M. indica, and A. butyriciproducens, which are low-abundant, short-chain fatty acid (SCFA)-producing bacteria isolated from healthy human gut, and tested its effect on host health using germ-free and human microbiota-associated colitis mouse models. The selection also favored these four bacteria being reduced in abundance in either Ulcerative Colitis (UC) or Crohn's disease (CD) metagenome samples. Our findings demonstrate that SC-4 can colonize germ-free (GF) mice, increasing mucin thickness by activating MUC-1 and MUC-2 genes, thereby protecting GF mice from Dextran Sodium Sulfate (DSS)-induced colitis. Moreover, SC-4 aided in the recovery of human microbiota-associated mice from DSS-induced colitis, and intriguingly, its administration enhanced the alpha diversity of the gut microbiome, shifting the community composition closer to control levels. The results showed enhanced phenotypes across all measures when the mice were supplemented with inulin as a dietary fiber source alongside SC-4 administration. We also showed a functional redundancy existing in the gut microbiome, resulting in the low abundant SCFA producers acting as a form of insurance, which in turn accelerates recovery from the dysbiotic state upon the administration of SC-4. SC-4 colonization also upregulated iNOS gene expression, further supporting its ability to produce an increasing number of goblet cells. Collectively, our results provide evidence that low-abundant SCFA-producing species in the gut may offer a novel therapeutic approach to IBD.


Assuntos
Bactérias , Colite , Sulfato de Dextrana , Disbiose , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Animais , Ácidos Graxos Voláteis/metabolismo , Humanos , Disbiose/microbiologia , Camundongos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Colite/microbiologia , Colite/induzido quimicamente , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Masculino , Feminino , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Vida Livre de Germes
12.
Front Mol Biosci ; 11: 1420664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055983

RESUMO

Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting approximately 16.5% of pregnancies worldwide and causing significant health concerns. GDM is a serious pregnancy complication caused by chronic insulin resistance in the mother and has been associated with the development of neurodevelopmental disorders in offspring. Emerging data support the notion that GDM affects both the maternal and fetal microbiome, altering the composition and function of the gut microbiota, resulting in dysbiosis. The observed dysregulation of microbial presence in GDM pregnancies has been connected to fetal neurodevelopmental problems. Several reviews have focused on the intricate development of maternal dysbiosis affecting the fetal microbiome. Omics data have been instrumental in deciphering the underlying relationship among GDM, gut dysbiosis, and fetal neurodevelopment, paving the way for precision medicine. Microbiome-associated omics analyses help elucidate how dysbiosis contributes to metabolic disturbances and inflammation, linking microbial changes to adverse pregnancy outcomes such as those seen in GDM. Integrating omics data across these different layers-genomics, transcriptomics, proteomics, metabolomics, and microbiomics-offers a comprehensive view of the molecular landscape underlying GDM. This review outlines the affected pathways and proposes future developments and possible personalized therapeutic interventions by integrating omics data on the maternal microbiome, genetics, lifestyle factors, and other relevant biomarkers aimed at identifying women at high risk of developing GDM. For example, machine learning tools have emerged with powerful capabilities to extract meaningful insights from large datasets.

13.
Ecol Evol ; 14(7): e70057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041015

RESUMO

Butyrate-producing bacteria colonise the gut of humans and non-human animals, where they produce butyrate, a short-chain fatty acid with known health benefits. Butyrate-producing bacteria also reside in soils and soil bacteria can drive the assembly of airborne bacterial communities (the aerobiome). Aerobiomes in urban greenspaces are important reservoirs of butyrate-producing bacteria as they supplement the human microbiome, but soil butyrate producer communities have rarely been examined in detail. Here, we studied soil metagenome taxonomic and functional profiles and soil physicochemical data from two urban greenspace types: sports fields (n = 11) and nature parks (n = 22). We also developed a novel method to quantify soil butyrate and characterised the in situ activity of butyrate-producing bacteria. We show that soil butyrate was higher in sports fields than nature parks and that sports fields also had significantly higher relative abundances of the terminal butyrate production genes buk and butCoAT than nature parks. Soil butyrate positively correlated with buk gene abundance (but not butCoAT). Soil moisture (r = .50), calcium (r = -.62), iron (ρ = .54), ammonium nitrogen (ρ = .58) and organic carbon (r = .45) had the strongest soil abiotic effects on soil butyrate concentrations and iron (ρ = .56) and calcium (ρ = -.57) had the strongest soil abiotic effects on buk read abundances. Overall, our findings contribute important new insights into the role of sports fields as key exposure reservoirs of butyrate producing bacteria, with important implications for the provision of microbiome-mediated human health benefits via butyrate.

14.
Phytomedicine ; 132: 155888, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39084128

RESUMO

BACKGROUND: The efficacy of Liangxue Guyuan Yishen Decoction (LGYD), a traditional Chinese medicine, has been scientifically proven in the treatment of radiation-induced intestinal injury (RIII) and preservation of intestinal integrity and function following high-dose radiation exposure. However, further investigation is required to comprehensively elucidate the precise mechanisms underlying the therapeutic effects of LGYD in order to provide potential pharmaceutical options for radiation protection. PURPOSE: This study aims to elucidate the potential mechanism through which LGYD exerts its therapeutic effects on RIII by modulating the gut microbiota (GM). METHODS: 16 s rRNA analysis was employed to assess the impact of varying doses of whole body irradiation (WBI) on GM in order to establish an appropriate model for this study. The effects of LGYD on GM and SCFA were evaluated using 16 s rRNA and Quantification of SCFA. UHPLC-QE-MS was utilized to identify the active components in LGYD as well as LGYD drug containing serum (LGYD-DS). Subsequently, immunofluorescence and immunohistochemical staining were conducted to validate the influence of LGYD and/or characteristic microbiota on RIII recovery in vivo. The effects of LGYD-DS, characteristic flora, and SCFA on intestinal stem cell (ISC) were assessed by measuring organoid surface area in intestinal organoid model. RESULTS: The species composition and abundance of GM were significantly influenced by whole-body irradiation with a dose of 8.5 Gy, which was used as in vivo model. LGYD significantly improves the survival rate and promotes recovery from RIII. Additionally, LGYD exhibited a notable increase in the abundance of Akkermansia muciniphila (AKK) and levels of SCFA, particularly isobutyric acid. LGYD-DS consisted of seven main components derived from herbs of LGYD. In vivo experiments indicated that both LGYD and AKK substantially enhanced the survival rate after radiation and facilitated the recovery process for intestinal structure and function. In the organoid model, treatment with LGYD-DS, AKK supernatant or isobutyric acid significantly increased organoid surface area. CONCLUSIONS: LGYD has the potential to enhance RIII by promoting the restoration of intestinal stem cell, which is closely associated with the upregulation of AKK abundance and production of SCFA, particularly isobutyric acid.

15.
Poult Sci ; 103(9): 104020, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39084144

RESUMO

The present study investigated the effects of low protein diets with different starch sources and starch to protein ratio on growth, digestibility, intestinal health, caecal short chain fatty acids (SCFAs), serum cholesterol and triglycerides in broiler chickens. Eight hundred one-day-old male broiler chicks (Ross 308) were randomly allotted to one of 4 dietary treatments with 10 repeats and 20 birds in each repeat. The dietary treatments included 1) a standard protein corn-SBM based diet (SP), 2) a low protein corn-SBM based diet (LPI) without reduced starch: protein ratio, 3) a low protein corn-SBM based diet (LPII) with reduced starch: protein ratio, and 4) a low protein corn-SBM-peas based diet (LPP) and reduced starch: protein ratio. Soy hulls were added in the LPII and LPP diets to reduce starch: protein ratio. During the experiment period from 11 to 24 d, FI was not affected by the dietary treatments (P > 0.05). The BWG was significantly reduced in the LPI diet compared to the SP diet (P < 0.05). Likewise, FCR deteriorated in LPI and LPII but was better in the SP diet followed by the LPP diet (P < 0.05). The apparent total tract digestibility (ATTD) of dry matter (DM) varied significantly among the dietary treatments (P < 0.01). While ATTD of starch was similar for all the diets except the LPP diet wherein the ATTD of starch was significantly lower (P < 0.001). Ether extract digestibility was also significantly different between the SP and LPII dietary treatments (P < 0.01). The AME and AMEn values were significantly lower in the LPP diet compared with other dietary treatments (P < 0.001). Nitrogen retention (%) was increased in all the LP diets compared with the SP diet (P < 0.001), but it was significantly better in both LPII and LPP diets compared to the LPI diet. The data showed that cecal SCFAs production was increased in the LPII and LPP compared to the SP and LPI diets (P < 0.001). Further, the production of acetic, butyric, and propionic acids was substantially higher in the LPP diet (P < 0.001). There was no significant difference in gene expression of Claudin-1 and ZO-1 (P > 0.05). However, MUC-2 and GLUT-1 gene expression were significantly downregulated in the LPI diet (P < 0.05). The concentration of cholesterol and triglycerides was significantly increased in the LPI diet (P < 0.001). In conclusion, the addition of peas as a slowly digestible starch source combined with soy hulls in low protein diet helped to partly recover the growth performance and improved cecal SCFAs production compared to other low protein diets with and without reduced starch: protein ratio in broiler chickens.

16.
J Microbiol Biotechnol ; 34(7): 1501-1510, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38960873

RESUMO

Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.


Assuntos
Anti-Inflamatórios , Colite , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Alimentos de Soja , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos , Anti-Inflamatórios/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Citocinas/metabolismo , Fermentação , Alimentos Fermentados/microbiologia , Glycine max/química , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Masculino
17.
Nat Prod Bioprospect ; 14(1): 41, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955923

RESUMO

In this study, the effects of sea buckthorn oil (SBO), fish oil (FO) and an enzymatically synthesized structured lipid (SL) on serum, short-chain fatty acids (SCFAs) and intestinal microbiota in Sprague-Dawley (SD) rats were investigated. The results demonstrated that FO, SBO, and SL effectively reduced the levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in the serum of SD rats. SBO increased serum triglyceride levels, while FO elevated total cholesterol levels. Furthermore, all three dietary lipids decreased short-chain fatty acid production and enhanced intestinal microbiota diversity. FO increased the abundance of intestinal microbiota including Romboutsia, Lactobacillus, Escherichia-Shigella, and Lachnospiraceae_NK4A136_group. Conversely, all three dietary lipids reduced the abundance of Klebsiella and Blautia. These findings provide a foundation for understanding the functionality of SBO and FO as well as their potential application in synthesizing novel SLs to regulate intestinal microbiota.

18.
Front Cell Infect Microbiol ; 14: 1383774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947126

RESUMO

Silkworm (Bombyx mori) larvae are expected to be useful as an ingredient in entomophagy. They are full of nutrients, including indigestible proteins; however, there have been few studies on the effects of the consumption of the entire body of silkworms on the intestinal microflora. We prepared a customized diet containing silkworm larval powder (SLP), and investigated the effects of ad libitum feeding of the SLP diet on the intestinal microbiota and the amount of short-chain fatty acids (SCFAs) in mice. We found that the diversity of the cecal and fecal microbiota increased in the mice fed the SLP diet (SLP group), and that the composition of their intestinal microbiota differed from that of the control mice. Furthermore, a genus-level microbiota analysis showed that in the SLP group, the proportions of Alistipes, Lachnospiraceae A2, and RF39, which are associated with the prevention of obesity, were significantly increased, while the proportions of Helicobacter and Anaerotruncus, which are associated with obesity, were significantly decreased. Additionally, the level of butyrate was increased in the SLP group, and Clostridia UCG 014 and Lachnospiraceae FCS020 were found to be associated with the level of butyrate, one of the major SCFAs. These findings indicated that silkworm powder may be useful as an insect food that might also improve obesity.


Assuntos
Bombyx , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Larva , Animais , Bombyx/microbiologia , Bombyx/metabolismo , Larva/microbiologia , Camundongos , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Pós , Dieta , Ceco/microbiologia , Ceco/metabolismo , Masculino , Obesidade/microbiologia , Obesidade/metabolismo , Ração Animal
19.
Front Microbiol ; 15: 1355396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983625

RESUMO

Mongolian people possess a unique dietary habit characterized by high consumption of meat and dairy products and fewer vegetables, resulting in the highest obesity rate in East Asia. Although obesity is a known cause of type 2 diabetes (T2D), the T2D rate is moderate in this population; this is known as the "Mongolian paradox." Since the gut microbiota plays a key role in energy and metabolic homeostasis as an interface between food and body, we investigated gut microbial factors involved in the prevention of the co-occurrence of T2D with obesity in Mongolians. We compared the gut microbiome and metabolome of Mongolian adults with obesity with T2D (DO: n = 31) or without T2D (NDO: n = 35). Dysbiotic signatures were found in the gut microbiome of the DO group; lower levels of Faecalibacterium and Anaerostipes which are known as short-chain fatty acid (SCFA) producers and higher levels of Methanobrevibacter, Desulfovibrio, and Solobacterium which are known to be associated with certain diseases. On the other hand, the NDO group exhibited a higher level of fecal SCFA concentration, particularly acetate. This is consistent with the results of the whole shotgun metagenomic analysis, which revealed a higher relative abundance of SCFA biosynthesis-related genes encoded largely by Anaerostipes hadrus in the NDO group. Multiple logistic regression analysis including host demographic parameters indicated that acetate had the highest negative contribution to the onset of T2D. These findings suggest that SCFAs produced by the gut microbial community participate in preventing the development of T2D in obesity in Mongolians.

20.
Int J Biol Macromol ; 273(Pt 1): 133035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866276

RESUMO

The early symptoms of neurodegenerative diseases include oxidative stress disorder and accelerated inflammation levels. Edible fungi polysaccharides play essential roles in anti-neuroinflammation. We analyzed the regulatory mechanisms of polysaccharides from extracellular Armillariella tabescens (ATEP) in alleviating neuroinflammation in mice. Mice were induced with d-galactose and aluminum chloride to establish an animal model of Alzheimer's disease, then intragastrically treated with ATEP, which had been previously analyzed for its physicochemical properties. We assessed the critical characteristics of mice treated for neuroinflammation, including cognitive behavior, the anti-inflammatory potential of ATEP in hippocampal pathology and critical protein expression, and changes in fecal microbial composition and metabolites. ATEP intervened in oxidative stress by enhancing antioxidant enzyme activities and suppressing the Keap-1/Nrf2 signaling pathway. Changing the Nrf2 content in the nucleus led to changes in the downstream oxidation-related enzymes, HO-1, NQO-1, iNOS, and COX-2, and the neuronal morphology in CA3 region of the hippocampus. Microbiome analysis revealed that ATEP remodeled the gut microbiotas and regulated the short-chain fatty acids-producing bacteria. Early intervention with ATEP via active dietary supplementation may promote neuroprotection.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polissacarídeos , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Estresse Oxidativo/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Galactose , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...