RESUMO
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.e., the methylene-bridging propyl-guaiacol dimer and propyl guaiacol and eugenol glycidyl ethers, which can be used as precursors in phenolic and epoxy resins, respectively, thus providing additional information on how the molecular packing is altered following chemical modifications. In addition to the expected H-bonding interactions, other interactions such as π-π stacking and C-Hâââπ were observed. This resulted in unexpected trends in the tendencies towards the crystallization of lignin compounds. This was further explored with the aid of DSC analysis and CLP intermolecular energy calculations, where the relationship between the major interactions observed in all the SCXRD solid-state structures and their physico-chemical properties were evaluated alongside other non-crystallizable lignin model compounds. Beyond lignin model compounds, our findings could also provide important insights into the solid-state structure and the molecular organization of more complex lignin fragments, paving the way to the more efficient design of lignin-based materials with improved properties for industrial applications or improving downstream processing of lignin oils in biorefining processes, such as in enhancing the separation and isolation of specific bioaromatic compounds).
Assuntos
Lignina , Lignina/química , Ligação de Hidrogênio , Guaiacol/química , Guaiacol/análogos & derivados , Eugenol/química , Difração de Raios X , Modelos Moleculares , Estrutura Molecular , Cristalografia por Raios X , Fenóis , Óleos de Plantas , PolifenóisRESUMO
A new complex of copper(II) with methyl-5-(trifluoromethyl)pyrazol-3-yl-ketazine (H2L) was synthesized with the composition [Cu2L2]âC2H5OH (1). Recrystallization of the sample from DMSO yielded a single crystal of the composition [Cu2L2((CH3)2SO)] (2). The coordination compounds were studied by single-crystal X-ray diffraction analysis, IR spectroscopy, and static magnetic susceptibility method. The data obtained indicate that the polydentate ligand is coordinated by both acyclic nitrogen and heterocyclic nitrogen atoms. The cytotoxic activity of the ligand and complex 1 was investigated on human cell lines MCF7 (breast adenocarcinoma), Hep2 (laryngeal carcinoma), A549 (lung carcinoma), HepG2 (hepatocellular carcinoma), and MRC5 (non-tumor lung fibroblasts). The complex was shown to have a pronounced dose-dependent cytotoxicity towards these cell lines with LC50 values in the range of 0.18-4.03 µM.
Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Hidrazonas , Humanos , Cobre/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Cristalografia por Raios X , Estrutura Molecular , Ligantes , Células MCF-7 , Células Hep G2RESUMO
Hydrated dispersions containing equimolar mixtures of cationic and anionic amphiphiles, referred to as catanionic systems, exhibit synergistic physicochemical properties, and mixing single-chain cationic and anionic lipids can lead to the spontaneous formation of vesicles as well as other phase structures. In the present work, we have characterized two catanionic systems prepared by mixing N-acyltaurines (NATs) and sarcosine alkyl esters (SAEs) bearing 11 and 12 C atoms in the acyl/alkyl chains. Turbidimetric and isothermal titration calorimetric studies revealed that both NATs form equimolar complexes with SAEs having matching acyl/alkyl chains. The three-dimensional structure of the sarcosine lauryl ester (lauryl sarcosinate, LS)-N-lauroyltaurine (NLT) equimolar complex has been determined by single-crystal X-ray diffraction. The LS-NLT equimolar complex is stabilized by electrostatic attraction and multiple hydrogen bonds, including classical, strong N-H···O hydrogen bonds as well as several C-H···O hydrogen bonds between the two amphiphiles. DSC studies showed that both equimolar complexes show single sharp phase transitions. Transmission electron microscopy and dynamic light scattering studies have demonstrated that the LS-NLT catanionic complex assemblies yield stable medium-sized vesicles (diameter 280-350 nm). These liposomes were disrupted at high pH, suggesting that the designed catanionic complexes can be used to develop base-labile drug delivery systems. In vitro studies with these catanionic liposomes showed efficient entrapment (73% loading) and release of the anticancer drug 5-fluorouracil in the physiologically relevant pH range of 6.0-8.0. The release rate was highest at pH 8.0, reaching about 78%, 90%, and 100% drug release at 2, 6, and 12 h, respectively. These observations indicate that LS-NLT catanionic vesicles will be useful for designing drug delivery systems, particularly for targeting organs such as the colon, which are inherently at basic pH.
Assuntos
Materiais Biocompatíveis , Fluoruracila , Tamanho da Partícula , Fluoruracila/química , Estrutura Molecular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Teste de Materiais , Cátions/química , Sarcosina/química , Sarcosina/análogos & derivados , Ésteres/química , Humanos , Lipossomos/químicaRESUMO
Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light-matter interactions are of particular importance, and photocrystallography has proved to be an important tool for studying these interactions. In this technique, the three-dimensional structures of light-activated molecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of molecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The complexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of complementary analytical techniques in order to understand the solid-state processes fully.
RESUMO
Group 14/16 adamantane-type hybrid clusters of the type [(RT)4E6] (T=group 14 element, E=group 16 element, R=organic group) have been reported to emit white-light when irradiated in an amorphous state with a continuous-wave (CW) infrared laser diode. This effect is enhanced if the cluster core is varied from a binary to a more complex composition. To further explore this phenomenon, we synthesized clusters with a multinary R/R'-T/T'-E/E' composition, including isolobal replacement of E with CH2, in [(2-NpSi){CH2Sn(S)Ph}3] (1, Np=naphthyl). When expanding one of the CH2 moieties to a C2H4 group, thus generating a R/R'-T/T'-E/E'/E'' cluster composition, we unexpectedly observed a dimerization of the initially formed, yet non-isolable adamantane-like cluster [(2-NpSi){CH2Sn(S)Ph}2{C2H4Sn(S)Ph}] (2) to [(2-NpSi){CH2Sn(S)Ph}2{C2H4Sn(S)Ph}]2 (3), exhibiting a heretofore unprecedented cluster architecture. Both monomeric 1 and dimeric 3, show white-light emission as thin films. The nonlinear optical response of the compounds was also modelled with DFT methods.
RESUMO
Design of material showing contraction upon heating is highly challenging due to varying mechanism. However, imidazole is found to be a potential molecule that may provide low CTE materials when incorporated in the matrix. Here we have reported thermal expansion property of imidazolium salts of five aliphatic α, ω-alkane dicarboxylic acids and three aromatic acids. Either uniaxial or biaxial negative thermal expansion (NTE) has been observed in most of the salts. In some cases, axial zero thermal expansion (ZTE) has been observed. The role of imidazolium moiety for the anomalous thermal expansion behaviour of the salts has been analyzed in this study. The controlled TE behaviour of the salts is attributed to the hydrogen bonding and transverse vibration in all imidazolium salts. Owing to the high transverse vibration observed in imidazolium ion as well as the heavier oxygen atoms of acids in each case, the distance between hydrogen bonded atoms decreases-which provides either low expansion or contraction along one of the principal axes.
RESUMO
The fluorination of the central ring of 1,3,5-benzene-tris-(meta-benzoate) (referred to as BTMB) leads to a twisted tritopic linker which reacts with copper(II) ions to assemble into octahedral (pseudospherical) metal-organic cages (MOCs) with paddle-wheel units at their vertices. In this work, the different sphere packings of these MOCs are explored in detail together with their material properties, which closely resemble those of copper-based metal-organic frameworks (MOFs). Theoretical investigations of the linkers are carried out to analyze the energetic barrier imposed by the fluorine substituents to form the observed atropisomers.
RESUMO
Uncaria rhynchophylla (Miq.) Miq. (Rubiaceae) is widely used as a botanical raw material for traditional Japanese and Chinese medicines. However, not all of its potentially bioactive constituents have been isolated and characterized. Herein, one new indole alkaloid triglucoside (1), nine known alkaloids (2-10) and thirteen known non-alkaloids (11-23) were isolated from the aqueous extract of Uncaria rhynchophylla hook and structurally characterized 1H and 13C NMR and high-resolution electrospray ionization mass spectrometry. The absolute configurations of isolated compounds (1, 2 and 3) were determined by the X-ray diffraction analysis of their single crystals obtained using a micro-drop crystallization technique. This technique allows single crystals to be obtained from samples as small as 50 µg, thus providing detailed structural information even on minor constituents and enabling the accurate quality monitoring of botanical raw materials more accurately.
RESUMO
The study of complex phases in nuclear fuels is necessary to understand the physicochemical properties of the fuel. Na6Mo7O24â 14H2O (1) was prepared via a simplified method and the crystal structure was improved. Upon thermal degradation, 1 decomposes into Na2Mo2O7 and MoO3. Additionally, novel Ba3Mo7O24â 12H2O (2) was isolated via an aqueous synthetic route and characterized via FTIR and elemental analysis. PXRD pattern of 2 was determined. Thermal degradation of 2 indicates formation of BaMoO4, BaMo3O10, MoO3, and an unidentified phase.
RESUMO
The crystal structure of lithium xanthinate hydrate was studied by single crystal X-ray diffraction and Raman spectroscopy on cooling to 100â K and under compression to 5.3â GPa. A phase transition at â¼4â GPa is observed. No phase transitions occur on cooling. Anisotropy of lattice strain and changes in intermolecular interactions are compared.
RESUMO
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 µM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 µM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Indazóis , Simulação de Acoplamento Molecular , Tiazóis , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Simulação de Acoplamento Molecular/métodos , Indazóis/farmacologia , Indazóis/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Humanos , Tiazóis/farmacologia , Tiazóis/química , Desenho de Fármacos , Relação Estrutura-AtividadeRESUMO
Investigation of the analyte soaking conditions on the crystalline sponge {[(ZnI2)3(tpt)2·x(solvent)]n} method using a statistical design of experiments model has provided fundamental insights into the influence of experimental variables. This approach focuses on a single analyte tested via 60 experiments (20 unique conditions) to identify the main effects for success and overall guest structure quality. This is employed as a basis for the development of a novel molecular structure grading system that enables the quantification of guest exchange quality.
RESUMO
A domain-resolved synchrotron single-crystal X-ray diffraction study of a LaAlO3 pseudo-merohedral twin crystal was successfully carried out in combination with powder diffraction data from the same sample. Multiscale structure information ranging from micro- to nano- to atomic scale was determined from one single crystal. There is almost no change of domain ratios at temperatures of less than 400â K indicating no movement of the domain wall. The changes in domain ratio indicating domain-wall movement were observed in the temperature range of 450 to 700â K, which is consistent with the result of the previous mechanical measurement. It is also found that the ratio of four twin components becomes equal (25%), just below phase transition temperature. These findings are important for domain engineering and theoretical studies related to LaAlO3. The temperature dependence of domain ratio was preserved in the heating and cooling cycle except for the first heating process to 840â K. Therefore, the domain structure after heating to 840â K is intrinsic to the crystal. Accurate structure parameters were determined through unit-cell parameter calibration and domain-resolved structure analysis. The method for calibration of unit-cell parameters from twin crystal data was derived and used to solve the inconsistent unit-cell parameters between single crystal and powder data in the present and previous studies.
RESUMO
Two new lanthanide-complexes based on the 5-nitropicolinate ligand (5-npic) were obtained and fully characterized. Single-crystal X-ray diffraction revealed that these compounds are isostructural to a Dy-complex, previously published by us, based on dinuclear monomers link together with an extended hydrogen bond network, providing a final chemical formula of [Ln2(5-npic)6(H2O)4]·(H2O)2, where Ln = Dy (1), Gd (2), and Tb (3). Preliminary photoluminescent studies exhibited a ligand-centered emission for all complexes. The potential antitumoral activity of these materials was assayed in a prostatic cancer cell line (PC-3; the 2nd most common male cancerous disease), showing a significant anticancer activity (50-60% at 500 µg·mL-1). In turn, a high biocompatibility by both, the complexes and their precursors in human immunological HL-60 cells, was evidenced. In view of the strongest toxic effect in the tumoral cell line provided by the free 5-npic ligand (~ 40-50%), the overall anticancer complex performance seems to be triggered by the presence of this molecule.
Assuntos
Antineoplásicos , Elementos da Série dos Lantanídeos , Ácidos Picolínicos , Humanos , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Masculino , Ensaios de Seleção de Medicamentos Antitumorais , Modelos Moleculares , Células HL-60 , Cristalografia por Raios X , Estrutura Molecular , Linhagem Celular Tumoral , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
The reactivity of an isolable 2-germapropadiene with acids, ketones, and amines was investigated. The reactions of 2-germapropagiene 1 with hydrogen chloride and acetic acid afforded the corresponding dichlorogermane (2) and diacetoxygermane (3), respectively, indicating that the central germanium atom of 1 is electrophilic. The reaction of 1 with benzaldehyde proceeds via a formal [2+2] cycloaddition to afford the corresponding spiro compound (4). Moreover, 1 reacts smoothly with acetone to furnish germane 5, which contains a six-membered ring involving two acetone molecules. Furthermore, 1 undergoes N-H bond insertion with methylamine or aniline to afford diamino germanes 7 and 8, respectively. The reaction of 1 with urea selectively afforded the corresponding N-H-insertion product (8).
RESUMO
Novel kinds of starch spectra were generated from a lesser-known plant, making this investigation unique. The recent trend of starch characterization shows the establishment of novel bioresources from nonconventional unexplored databases. The present endeavor was made to obtain the starch fingerprint of Ampelopteris prolifera (rhizome) belonging to seedless vascular plants. For comparison, a commercial local cultivar of potato (Kufri Jyoti) was taken. The starch particle of A. prolifera shows much uniqueness depicting its novelty viz., crystallinity index of 60.04â¯%, powder diffractogram at (2θ scale)17.57° to 39.78°; this diffractogram pattern is reported from this study as newer one i.e. R type(whereas potato starch is CB type); characteristic peak at 2θâ¯=â¯20.07° suggests starch-lipid complex formation and V type crystallinity (i.e. RS 5 type); FTIR spectra showing the presence of more short chain branching; high gelatinization temperature(84.62⯱â¯0.10), particle size and zeta value of A. prolifera is 4.00⯱â¯0.81⯵m andâ¯-â¯18.91⯱â¯3.58â¯mV respectively. Bragg's peak from the single crystal X-ray diffraction has been generated for the first time of A. prolifera. Extraction of the starch particle was performed in chilled water. Therefore, the present study suggests wide-spectrum commercial utility and cost-effective production.
Assuntos
Solanum tuberosum , Amido , Solanum tuberosum/química , Amido/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Nanostructures formed by the self-assembly of modified/unmodified amino acids have the potential to be useful in several biological/nonbiological applications. In that regard, the greater conformational space provided by γ-amino acids, owing to their additional backbone torsional degrees of freedom and enhanced proteolytic stability, compared to their α-counterparts, should be explored. Though, modified single amino acid-based nanomaterials such as nanobelts or hydrogels are developed by utilizing the monosubstituted γ-amino acids derived from the backbone homologation of phenylalanine (Phe). Examples of a single γ-amino acid-based porous nanostructure capable of accommodating solvent molecules are not really known. The crystal structures of a modified γ4(R)Phe residue, Boc-γ4(R)Phe-OH, at different temperatures, showed that hydrogen-bonded water molecules are forming a wire inside hydrophilic nanochannels. The dynamics of intermolecular interactions between the water wire and the inner wall of the channel with relation to the temperature change was investigated by analyzing the natural bonding orbital (NBO) calculation results performed with the single crystal structures obtained at different temperature points. The NBO results showed that from 325 K onward, the strength of water-water interactions in the water wire are getting weaker, whereas, for the water-inner wall interactions, it getting stronger, suggesting a favorable change in the orientation of water molecules with temperatures, for the latter.
Assuntos
Aminoácidos , Água , Aminoácidos/química , Fenilalanina/química , Aminas/química , Conformação Molecular , Ligação de HidrogênioRESUMO
Bipoladiens A-E (1-5), five new ophiobolin-derived sesterterpenoids, and a known compound 6 (bipolaricin R) were isolated from the cultures of the phytopathogenic fungus Bipolaris maydis. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, HRESIMS, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Notably, compound 1 has an undescribed tetracyclic 5/8/5/7 fused carbon skeleton, and compound 2 possesses a rare multicyclic caged ring system. The biosynthetic pathway of 1 was proposed starting from 6 via a series of oxidation and cyclization reactions. Compound 6 showed excellent antiproliferation and apoptosis induction effects against A549 cell line. Additionally, compounds 5 and 6 exhibited noticeable antimicrobial ability against Bacillus cereus, Staphylococcus aureus, and Staphylococcus epidermidis. These findings not only developed the chemical and bioactivities diversities of ophiobolin-sesterterpenoid but also provided an idea to boost the application of natural products in the control of food pathogens.
Assuntos
Anti-Infecciosos , Sesterterpenos , Sesterterpenos/farmacologia , Sesterterpenos/química , Bipolaris , Estrutura MolecularRESUMO
The structures of five ammonium salt forms of monosulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydrophobic (organic) and hydrophilic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the monosulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different interaction types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydrophobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.
RESUMO
Among various metal-organic frameworks (MOFs), the zeolitic imidazole framework (ZIF), constructed by the regular arrangement of 2-methylimidazole and metal ions, has garnered significant attention due to its distinctive crystals and pore structures. Variations in the sizes and shapes of ZIF crystals have been reported by changing the synthesis parameters, such as the molar ratios of organic ligands to metal ions, choice of solvents, and temperatures. Nonetheless, the giant ZIF-8 single crystals beyond the typical range have rarely been reported. Herein, we present the synthesis of millimeter-scale single crystal ZIF-8 using the solvothermal method in N,N-diethylformamide. The resulting 1-mm single crystal is carefully characterized through N2 adsorption-desorption isotherms, scanning electron microscopy, and other analytical techniques. Additionally, single-crystal X-ray diffraction is employed to comprehensively investigate the framework's mobility at various temperatures.
Millimeter-sized ZIF-8 single crystals were synthesized using the solvothermal method. These crystals exhibit a notable BET surface area of 1681 m2âg−1 and demonstrate a reversible change in their crystal structure.