Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 781-789, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121662

RESUMO

HYPOTHESIS: Multi-walled tubular aggregates formed by hierarchical self-assembly of beta-cyclodextrin (ß-CD) and sodium dodecylsulfate (SDS) hold a great potential as microcarriers. However, the underlying mechanism for this self-assembly is not well understood. To advance the application of these structures, it is essential to fine-tune the cavity size and comprehensively elucidate the energetic balance driving their formation: the bending modulus versus the microscopic line tension. EXPERIMENTS: We investigated temperature-induced changes in the hierarchical tubular aggregates using synchrotron small-angle X-ray scattering across a broad concentration range. Detailed analysis of the scattering patterns enabled us to determine the structural parameters of the microtubes and to construct a phase diagram of the system. FINDINGS: The microtubes grow from the outside in and melt from the inside out. We relate derived structural parameters to enthalpic changes driving the self-assembly process on the molecular level in terms of their bending modulus and microscopic line tension. We find that the conformation of the crystalline bilayer affects the saturation concentration, providing an example of a phenomenon we call conformational freezing point depression. Inspired by the colligative phenomenon of freezing point depression, well known from undergraduate physics, we model this system by including the membrane conformation, which can describe the energetics of this hierarchical system and give access to microscopic properties without free parameters.

2.
J Appl Crystallogr ; 57(Pt 5): 1528-1538, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39387087

RESUMO

Using a 5 µm-diameter X-ray beam, we collected scanning X-ray microdiffraction in both the small-angle (SAXS) and the wide-angle (WAXS) regimes from thin sections of fixed human brain tissue from Alzheimer's subjects. The intensity of scattering in the SAXS regime of these patterns exhibits essentially no correlation with the observed intensity in the WAXS regime, indicating that the structures responsible for these two portions of the diffraction patterns, which reflect different length scales, are distinct. SAXS scattering exhibits a power-law behavior in which the log of intensity decreases linearly with the log of the scattering angle. The slope of the log-log curve is roughly proportional to the intensity in the SAXS regime and, surprisingly, inversely proportional to the intensity in the WAXS regime. We interpret these observations as being due to the presence of sub-micrometre-sized voids formed during dehydration of the fixed tissue. The SAXS intensity is due largely to scattering from these voids, while the WAXS intensity derives from the secondary structures of macromolecular material surrounding the voids. The ability to detect and map the presence of voids within thin sections of fixed tissue has the potential to provide novel information on the degradation of human brain tissue in neurodegenerative diseases.

3.
Macromol Rapid Commun ; : e2400569, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388642

RESUMO

Self-assembled networks of bottlebrush copolymers are promising materials for biomedical applications due to a unique combination of ultra-softness and strain-adaptive stiffening, characteristic of soft biological tissues. Transitioning from ABA linear-brush-linear triblock copolymers to A-g-B bottlebrush graft copolymer architectures allows significant increasing the mechanical strength of thermoplastic elastomers. Using real-time synchrotron small-angle X-ray scattering, it is shown that annealing of A-g-B elastomers in a selective solvent for the linear A blocks allows for substantial network reconfiguration, resulting in an increase of both the A domain size and the distance between the domains. The corresponding increases in the aggregation number and extension of bottlebrush strands lead to a significant increase of the strain-stiffening parameter up to 0.7, approaching values characteristic of the brain and skin tissues. Network reconfiguration without disassembly is an efficient approach to adjusting the mechanical performance of tissue-mimetic materials to meet the needs of diverse biomedical applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39311060

RESUMO

Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202-212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality.

5.
J Biol Chem ; 300(10): 107770, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270823

RESUMO

Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.

6.
bioRxiv ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39314299

RESUMO

The structures of RNA:RNA complexes regulate many biological processes. Despite their importance, protein-free RNA:RNA complexes represent a tiny fraction of experimentally-determined structures. Here, we describe a joint small-angle X-ray and neutron scattering (SAXS/SANS) approach to structurally interrogate conformational changes in a model RNA:RNA complex. Using SAXS, we measured the solution structures of the individual RNAs in their free state and of the overall RNA:RNA complex. With SANS, we demonstrate, as a proof-of-principle, that isotope labeling and contrast matching (CM) can be combined to probe the bound state structure of an RNA within a selectively deuterated RNA:RNA complex. Furthermore, we show that experimental scattering data can validate and improve predicted AlphaFold 3 RNA:RNA complex structures to reflect its solution structure. Our work demonstrates that in silico modeling, SAXS, and CM-SANS can be used in concert to directly analyze conformational changes within RNAs when in complex, enhancing our understanding of RNA structure in functional assemblies.

7.
bioRxiv ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39229138

RESUMO

Arginyltransferase 1 (ATE1) catalyzes arginylation, an important post-translational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post-translational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small angle X-ray scattering (SAXS), and hydrogen deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR likely facilitates the formation of the complex between ATE1 and tRNAArg, adding a new complexity to ATE1 structure and providing new insights for future studies of ATE1 functions.

8.
Protein Sci ; 33(10): e5152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275999

RESUMO

γ-Hydroxybutyric acid (GHB) analogs are small molecules that bind competitively to a specific cavity in the oligomeric CaMKIIα hub domain. Binding affects conformation and stability of the hub domain, which may explain the neuroprotective action of some of these compounds. Here, we describe molecular details of interaction of the larger-type GHB analog 2-(6-(4-chlorophenyl)imidazo[1,2-b]pyridazine-2-yl)acetic acid (PIPA). Like smaller-type analogs, PIPA binding to the CaMKIIα hub domain promoted thermal stability. PIPA additionally modulated CaMKIIα activity under sub-maximal CaM concentrations and ultimately led to reduced substrate phosphorylation. A high-resolution X-ray crystal structure of a stabilized CaMKIIα (6x mutant) hub construct revealed details of the binding mode of PIPA, which involved outward placement of tryptophan 403 (Trp403), a central residue in a flexible loop close to the upper hub cavity. Small-angle X-ray scattering (SAXS) solution structures and mass photometry of the CaMKIIα wild-type hub domain in the presence of PIPA revealed a high degree of ordered self-association (stacks of CaMKIIα hub domains). This stacking neither occurred with the smaller compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), nor when Trp403 was replaced with leucine (W403L). Additionally, CaMKIIα W403L hub was stabilized to a larger extent by PIPA compared to CaMKIIα hub wild type, indicating that loop flexibility is important for holoenzyme stability. Thus, we propose that ligand-induced outward placement of Trp403 by PIPA, which promotes an unforeseen mechanism of hub domain stacking, may be involved in the observed reduction in CaMKIIα kinase activity. Altogether, this sheds new light on allosteric regulation of CaMKIIα activity via the hub domain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Domínios Proteicos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Espalhamento a Baixo Ângulo , Triptofano/química , Triptofano/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Fosforilação
9.
Adv Mater ; 36(39): e2406653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39113338

RESUMO

The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.

10.
Appl Spectrosc ; : 37028241272257, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094006

RESUMO

In this study, a new system was developed to carry out simultaneous near-infrared (NIR) and small-angle X-ray scattering (SAXS) measurements. Aged polypropylene (PP) was examined with the NIR-SAXS system to demonstrate how it can be utilized to derive pertinent information about the polymer structure. Pairs of SAXS profiles and NIR spectra of PP in its initial state and after aging were measured to derive an in-depth understanding of the aging phenomenon. The SAXS profiles of the PP samples showed a clear shift of the SAXS peak to the lower q direction induced by the thermal aging, indicating an increase in the length of the long-period structure. Two-trace two-dimensional (2T2D) asynchronous correlation spectra derived from NIR spectra clearly revealed that the aging treatment leads to a substantial increase in the spectral intensity of the regularity bands representing the longer helix present in a folded lamellar structure. In other words, it suggests that the long helix structure is more abundantly present than the short helix structure in the aged PP than in the initial PP. By combining the information derived from the SAXS profiles and NIR spectra, the details of the aging-induced variation were clearly determined. Namely, aging causes additional crystallization of the PP by developing more helical structures, which involves an increase in the lamellar thickness as well as a decrease in the amorphous region. The growth of the rigid crystalline phase restricts the elastic deformation in the amorphous structure, which eventually induces the deterioration of PP by making the polymer hard but brittle. Such observation, in turn, implies that retarding or accelerating the crystallized structure of PP substantially works to control the progress of aging.

11.
J Biol Chem ; 300(9): 107624, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098532

RESUMO

Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an Escherichia coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilized C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerization.


Assuntos
Fator H do Complemento , Polissacarídeos , Fator H do Complemento/metabolismo , Fator H do Complemento/química , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosilação , Domínios Proteicos , Multimerização Proteica , Complemento C3b/metabolismo , Complemento C3b/química , Saccharomycetales/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
12.
Curr Res Struct Biol ; 8: 100156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131116

RESUMO

Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.

13.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133851

RESUMO

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Assuntos
Amiloide , Muramidase , Amiloide/química , Amiloide/metabolismo , Muramidase/química , Muramidase/metabolismo , Dobramento de Proteína , Temperatura , Ondas Ultrassônicas , Simulação de Dinâmica Molecular
14.
Int J Biol Macromol ; 278(Pt 1): 134556, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128762

RESUMO

Structural insight eludes on how full-length gelsolin depolymerizes and caps filamentous (F-)actin, while the same entity can nucleate polymerization of G-actins. Analyzing small angle X-ray scattering (SAXS) data, we deciphered assemblies which enable these contrasting processes. Mixing Ca2+-gelsolin with F-actin in high salt F-buffer resulted in depolymerization of ordered F-actin rods to smaller sized species which became monodispersed upon dialysis with low salt G-buffer. These entities were the ternary (GA2) and binary (GA) complexes of gelsolin and actin with radius of gyration and maximum linear dimension of 4.55 and 4.68 nm, and 15 and 16 nm, respectively. Using size exclusion chromatography in-line with SAXS, we confirmed that initially GA and GA2 species are formed as seen upon depolymerization of F-actin followed by dialysis. Interestingly, while GA2 could seed formation of native-like F-actin in both G- and F-buffer, GA failed in G-buffer. Thus, GA2 and GA are the central species formed via depolymerization or towards nucleation. SAXS profile referenced modeling revealed that: 1) in GA, actin is bound to the C-terminal half of gelsolin, and 2) in GA2, second actin binds to the open N-terminal half accompanied by dramatic rearrangements across g1-g2 and g3-g4 linkers.


Assuntos
Actinas , Cálcio , Gelsolina , Espalhamento a Baixo Ângulo , Difração de Raios X , Gelsolina/química , Actinas/química , Cálcio/química , Modelos Moleculares , Ligação Proteica , Animais , Conformação Proteica
15.
Food Res Int ; 192: 114680, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147535

RESUMO

Driven by the acknowledged health and functional properties of milk fat globules (MFGs), there is a growing interest to develop gentle methodologies for separation of fat from milk. In this study, separation of fat from raw milk and fractionation in streams containing MFGs of different size was achieved using a series of two silicon carbide ceramic membranes. A first step consisting of a 1.4 µm membrane aimed to concentrate the bulk of the fat, i.e. the larger MFGs (D[4,3] âˆ¼ 4 µm) followed by a 0.5 µm fractionation aimed to concentrate the residual milk fat in the permeate, i.e. fraction with the smaller MFGs (D[4,3] âˆ¼ 1.8-2.4 µm. The fat separation performance showed a yield of 92 % for the 1.4 µm membrane and 97 % for the 0.5 µm membrane. Both fat enriched retentates showed, by the confocal laser scanning microscopy, intact MFGs with limited damage in the MFG membrane. The fatty acid profile analysis and SAXS showed minor differences in fat acid composition and the crystallization behavior was related to differences in the fat content. The 0.5 µm permeate containing the smallest MFGs however showed larger aggregates and a trinomial particle size distribution, due to probably pore pressure induced coalescences. The series of silicon carbide membranes showed potential to concentrate some of MFGM proteins such as Periodic Schiff base 3/4 and cluster of differentiation 36 especially in the 0.5 µm retentates. A shift in casein to whey protein ratio from 80:20 (milk) to 50:50 was obtained in the final 0.5 µm permeate, which opens new opportunities for product development.


Assuntos
Compostos Inorgânicos de Carbono , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Leite , Compostos de Silício , Gotículas Lipídicas/química , Compostos de Silício/química , Glicolipídeos/química , Compostos Inorgânicos de Carbono/química , Glicoproteínas/química , Glicoproteínas/análise , Animais , Leite/química , Membranas Artificiais , Tamanho da Partícula , Ácidos Graxos/análise , Ácidos Graxos/química , Difração de Raios X , Sialoglicoproteínas , Espalhamento a Baixo Ângulo , Fracionamento Químico/métodos
16.
Proteins ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171358

RESUMO

Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium-chain C4-C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (ß/α)8 TIM-barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264-293, which form a ß-hairpin or a coil in Vibrio harveyi LuxA, form α-helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.

17.
Mol Pharm ; 21(9): 4553-4564, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163212

RESUMO

The solution viscosity and protein-protein interactions (PPIs) as a function of temperature (4-40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose. The flow activation energy (Eη) was extracted from the temperature dependence of solution viscosity using the Arrhenius equation. PPIs were quantified via the protein diffusion interaction parameter (kD) measured by dynamic light scattering, together with the osmotic second virial coefficient and the structure factor obtained through small-angle X-ray scattering. Both viscosity and PPIs were found to vary with the formulation conditions. Adding NaCl introduces an attractive interaction but leads to a significant reduction in the viscosity. However, adding sucrose enhances an overall repulsive effect and leads to a slight decrease in viscosity. Thus, the averaged (attractive or repulsive) PPI information is not a good indicator of viscosity at high protein concentrations for the mAb studied here. Instead, a correlation based on the temperature dependence of viscosity (i.e., Eη) and the temperature sensitivity in PPIs was observed for this specific mAb. When kD is more sensitive to the temperature variation, it corresponds to a larger value of Eη and thus a higher viscosity in concentrated protein solutions. When kD is less sensitive to temperature change, it corresponds to a smaller value of Eη and thus a lower viscosity at high protein concentrations. Rather than the absolute value of PPIs at a given temperature, our results show that the temperature sensitivity of PPIs may be a more useful metric for predicting issues with high viscosity of concentrated solutions. In addition, we also demonstrate that caution is required in choosing a proper protein concentration range to extract kD. In some excipient conditions studied here, the appropriate protein concentration range needs to be less than 4 mg/mL, remarkably lower than the typical concentration range used in the literature.


Assuntos
Anticorpos Monoclonais , Cloreto de Sódio , Sacarose , Temperatura , Anticorpos Monoclonais/química , Viscosidade , Sacarose/química , Cloreto de Sódio/química , Soluções , Espalhamento a Baixo Ângulo
18.
Carbohydr Polym ; 343: 122473, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174098

RESUMO

A thermoresponsive highly branched polysaccharide derivative was revealed from commercially available highly branched cyclic dextrin (HBCD), originally synthesized from amylopectin. Eight samples of partially substituted ethyl carbamate derivatives of HBCD (HEC) were prepared with a degree of substitution DS ranging from 0.27 to 1.46. Three samples with DS = 0.88, 1.05, and 1.22 showed LCST type phase separation in water. The intrinsic viscosity and form factor in water were typical of the hyperbranched structure. The intermolecular interactions between HEC and iodine or 1-anilinonaphthalene-8-sulfonic acid (ANS) were appreciably different from those of the linear analog (AEC), suggesting that the locally bent helical conformation of highly branched HEC chains has a different interaction with small molecules. The phase diagram of HEC-water systems was accidentally similar to that of the linear chain with the same molar mass and DS, although the one phase region of the branched polymer chain-poor solvent system is usually wider than that of the corresponding linear chain. This is likely due to the lower hydration nature of the polymer segment of HEC chains than that of the corresponding linear chain.

19.
FEBS J ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180270

RESUMO

The Nipah and Hendra viruses are severe human pathogens. In addition to the P protein, their P gene also encodes the V and W proteins that share with P their N-terminal intrinsically disordered domain (NTD) and possess distinct C-terminal domains (CTDs). The W protein is a key player in the evasion of the host innate immune response. We previously showed that the W proteins are intrinsically disordered and can form amyloid-like fibrils. However, structural information on W CTD (CTDW) and its potential contribution to the fibrillation process is lacking. In this study, we demonstrate that CTDWS are disordered and able to form dimers mediated by disulfide bridges. We also show that the NTD and the CTDW interact with each other and that this interaction triggers both a gain of secondary structure and a chain compaction within the NTD. Finally, despite the lack of intrinsic fibrillogenic properties, we show that the CTDW favors the formation of fibrils by the NTD both in cis and in trans. Altogether, the results herein presented shed light on the molecular mechanisms underlying Henipavirus pathogenesis and may thus contribute to the development of targeted therapies.

20.
Luminescence ; 39(8): e4856, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129424

RESUMO

Most nonconventional luminogens enjoy good water solubility and biocompatibility, showing unique application prospects in fields like biological imaging. Although clustering-triggered emission (CTE) mechanisms have been proposed to explain such emissions, the have not been thoroughly elucidated, which limits their development and application. Here, the photoluminescence properties of carboxymethyl ß-cyclodextrin (CM-ß-CD) aqueous solution are utilized to further investigate the effects of changes in concentration, in order to elucidate the emission mechanism through cryo-transmission electron microscopy (cryo-TEM), small-angle X-ray scattering (SAXS), molecular interaction analysis, and theoretical calculation. The results showed that the size distribution, morphology, and distance between water aggregates were successfully correlated with the cluster emission centers. The emission mechanism of nonconventional luminogen solutions was more clearly and intuitively elucidated, which has a promoting effect on the emission and application of this field. It is interesting that temperature-dependent emission spectra show the blue-shift phenomenon of PL with increasing excitation wavelengths. Moreover, due to its strong static quenching effect for Fe3+, CM-ß-CD can efficiently detect Fe3+ in mixed-ion aqueous solutions. It provides a strategy to clarify the CTE mechanism of nonconventional luminogen solutions more clearly and its application of mixed-ion detection.


Assuntos
Água , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Água/química , Luminescência , Íons/química , Soluções , Difração de Raios X , Espalhamento a Baixo Ângulo , Estrutura Molecular , Compostos Férricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...