Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 96: 106441, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37216791

RESUMO

Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.


Assuntos
Som , Vibração , Acústica , Micromanipulação/métodos , Tecnologia
2.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991841

RESUMO

The fault diagnosis of rolling bearings is critical for the reliability assurance of mechanical systems. The operating speeds of the rolling bearings in industrial applications are usually time-varying, and the monitoring data available are difficult to cover all the speeds. Though deep learning techniques have been well developed, the generalization capacity under different working speeds is still challenging. In this paper, a sound and vibration fusion method, named the fusion multiscale convolutional neural network (F-MSCNN), was developed with strong adaptation performance under speed-varying conditions. The F-MSCNN works directly on raw sound and vibration signals. A fusion layer and a multiscale convolutional layer were added at the beginning of the model. With comprehensive information, such as the input, multiscale features are learned for subsequent classification. An experiment on the rolling bearing test bed was carried out, and six datasets under various working speeds were constructed. The results show that the proposed F-MSCNN can achieve high accuracy with stable performance when the speeds of the testing set are the same as or different from the training set. A comparison with other methods on the same datasets also proves the superiority of F-MSCNN in speed generalization. The diagnosis accuracy improves by sound and vibration fusion and multiscale feature learning.

3.
Polymers (Basel) ; 14(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35012195

RESUMO

In this study, the vibration and sound response characteristics of composites produced via injection molding applied with a microcellular foaming process (MCPs) were improved. The study was conducted using PA6 and glass fiber composites, which are representative thermoplastic engineering plastics. Two types of specimens were used: a plate specimen to confirm the basic sound and vibration characteristics, and a large roof-rack specimen from an actual vehicle with a complex shape. The frequency response function curve was calculated by conducting an impact test, and natural frequency and damping ratio were measured based on the curve. The results confirmed that, in the case of a specimen manufactured through the injection molding process to which MCPs were applied, the natural frequency was lowered, and the damping ratio decreased. The degree of change in the natural frequency and damping ratio was confirmed. To determine the cause of the change in the natural frequency and damping ratio, the mode shape at the natural frequency of each specimen was measured and the relationship was confirmed by measuring the density and the elastic modulus of the composite. In addition, the usability of the specimens to which MCPs were applied was verified by conducting impact strength and tensile strength tests.

4.
R Soc Open Sci ; 5(7): 180639, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109107

RESUMO

This paper presents the analytical solution of radial vibration of a rolling cylinder submitted to a time-varying point force. In the simplest situation of simply supported edges and zero in-plane vibration, the cylinder is equivalent to an orthotropic pre-stressed plate resting on a visco-elastic foundation. We give the closed-form solution of vibration as a series of normal modes whose coefficients are explicitly calculated. Cases of both deterministic and random forces are examined. We analyse the effect of rolling speed on merging of vibrational energy induced by Doppler's effect for the example of rolling tyre.

5.
Proc Math Phys Eng Sci ; 473(2200): 20160927, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484335

RESUMO

This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature.

6.
Proc Math Phys Eng Sci ; 473(2197): 20160602, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28265190

RESUMO

This paper describes a discussion on the method and the status of a statistical theory of sound and vibration, called statistical energy analysis (SEA). SEA is a simple theory of sound and vibration in elastic structures that applies when the vibrational energy is diffusely distributed. We show that SEA is a thermodynamical theory of sound and vibration, based on a law of exchange of energy analogous to the Clausius principle. We further investigate the notion of entropy in this context and discuss its meaning. We show that entropy is a measure of information lost in the passage from the classical theory of sound and vibration and SEA, its thermodynamical counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...