Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38183631

RESUMO

Introduction: Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Innovation: Currently there are no therapeutic RNAs approved for use in DFUs. Use of dressings containing novel layer-by-layer (LbL)-formulated therapeutic RNAs that inhibit PHD2 and miR-210 can significantly improve diabetic wound healing. These dressings provide sustained release of therapeutic RNAs to the wounds locally without systemic side effects. Clinical Problem Addressed: Diabetic foot wounds are difficult to heal and often result in significant patient morbidity and mortality. Materials and Methods: We used the diabetic neuroischemic rabbit model of impaired wound healing. Diabetes was induced in the rabbits with alloxan, and neuroischemia was induced by ligating the central neurovascular bundle of each ear. Four 6-mm full-thickness wounds were created on each ear. A LbL technique was used to conformally coat the wound dressings with chemically modified RNAs, including an antisense oligonucleotide (antimiR) targeting microRNA-210 (miR-210), an short synthetic hairpin RNA (sshRNA) targeting PHD2, or both. Results: Wound healing was improved by the antimiR-210 but not the PHD2-sshRNA. Specific knockdown of miR-210 in tissue as measured by RT-qPCR was ∼8 Ct greater than nonspecific controls, and this apparent level of knockdown (>99%) suggests that delivery to the tissue is highly efficient at the administered dose. Discussion: Healing of ischemic/neuropathic wounds in diabetic rabbits was accelerated upon inhibition of miR-210 by LbL delivery to the wound bed. miR-210 inhibition was achieved using a chemically modified antisense RNA.

2.
Tissue Eng Part A ; 25(1-2): 44-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29644938

RESUMO

In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.


Assuntos
Diabetes Mellitus Experimental , Angiopatias Diabéticas , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Células NIH 3T3 , Oligonucleotídeos Antissenso/genética , Cicatrização/genética
3.
Gastroenterology ; 146(1): 63-6.e5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24076507

RESUMO

Short synthetic hairpin RNAs (sshRNAs) (SG220 and SG273) that target the internal ribosome entry site of the hepatitis C virus (HCV) were formulated into lipid nanoparticles and administered intravenously to HCV-infected urokinase plasminogen activator-severe combined immunodeficient mice with livers repopulated with human hepatocytes (humanized livers). Weekly administration of 2.5 mg/kg of each sshRNA for 2 weeks resulted in a maximal mean reduction in viral load of 2.5 log10 from baseline. The viral load remained reduced by more than 90% at 14 days after the last dose was given. The sshRNAs were well tolerated and did not significantly increase liver enzyme levels. These findings indicate the in vivo efficacy of a synthetic RNA inhibitor against the HCV genome in reducing HCV infection.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Carga Viral/efeitos dos fármacos , Animais , Quimera , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...