Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.057
Filtrar
1.
Ophthalmol Sci ; 5(1): 100589, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39328826

RESUMO

Purpose: To evaluate the feasibility and safety of intravitreal injection of autologous CD34+ stem cells from bone marrow (BMSCs) in eyes with vision loss from retinitis pigmentosa (RP). Design: Phase I prospective, open-label, single-center study. Participants: Seven eyes (7 patients) with RP with best-corrected visual acuity (BCVA) of 20/60 to 20/400 or visual field constriction to within 10°. Methods: A comprehensive examination with ETDRS BCVA, macular OCT, perimetry, and fluorescein angiography was performed at baseline, 1 to 3 months, and 6 months after study treatment. Bone marrow aspiration, isolation of CD34+ BMSCs under good manufacturing practice conditions, and intravitreal cell injection were performed on the same day. The CD34+ cells were isolated from bone marrow using a Ficoll gradient and the Miltenyi CliniMACS system. Isolated CD34+ cells were released for clinical use if viability, sterility, and purity met the release criteria accepted by the United States Food and Drug Administration for this clinical study. Main Outcome Measures: Number of CD34+ cells isolated for injection and adverse events associated with study treatment during follow-up. Secondary outcome measures are changes in BCVA and perimetry. Results: All isolated CD34+ cells passed the release criteria. A mean of 3.26 ± 0.66 million viable CD34+ cells (range 1.6 to 7.05 million) were injected intravitreally per eye. No adverse event was noted during the study follow-up except for 1 participant who was noted with transient cells in the anterior chamber with mild elevation in intraocular pressure at 18 hours after study injection which normalized by 24 hours. Best-corrected visual acuity remained within 2 lines of baseline or improved in all participants at 6 months follow-up. Perimetry was stable or improved in all eyes during study follow-up except 1 eye with transient improvement at 1 month and worsening of both eyes at 6 months. Conclusions: Intravitreal injection of autologous CD34+ BMSCs is feasible and appears to be well tolerated in eyes with vision loss from RP. A larger randomized prospective study would be needed to evaluate further the safety and potential efficacy of this cell therapy for vision loss associated with RP. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Biomaterials ; 313: 122775, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39241549

RESUMO

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Nanopartículas , Infarto do Miocárdio/terapia , Animais , Nanopartículas/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Recuperação de Função Fisiológica , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Microbolhas , Ondas Ultrassônicas
3.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181283

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Assuntos
Diferenciação Celular , Medicamentos de Ervas Chinesas , Endometriose , Endométrio , Fibrose , Células-Tronco Mesenquimais , Camundongos Nus , Comunicação Parácrina , Endometriose/tratamento farmacológico , Endometriose/patologia , Endometriose/metabolismo , Feminino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Camundongos , Células Cultivadas , Adulto , Modelos Animais de Doenças
4.
Methods Mol Biol ; 2848: 3-23, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240513

RESUMO

The challenge of treating corneal scarring through keratoplasties lies in the limited availability of donor tissue. Various studies have shown the therapeutic use of cultivated corneal stromal stem cells (CSSCs) to mitigate tissue inflammation and suppress fibrosis and scar tissue formation in preclinical corneal wound models. To develop CSSC therapy for clinical trials on patients with corneal scarring, it is necessary to generate clinical-grade CSSCs in compliant to Good Manufacturing Practice (GMP) regulations. This chapter elucidates human CSSC isolation, culture, and cryopreservation under GMP-compliant conditions. It underscores quality assessment encompassing morphological traits, expression of stemness markers, anti-inflammatory activity, and keratocyte differentiation potency.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Substância Própria , Humanos , Técnicas de Cultura de Células/métodos , Substância Própria/citologia , Separação Celular/métodos , Criopreservação/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Cultivadas , Biomarcadores , Células Estromais/citologia
5.
Methods Mol Biol ; 2848: 59-71, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240516

RESUMO

Glaucoma is one of the leading causes of irreversible blindness. Stem cell therapy has shown promise in the treatment of primary open-angle glaucoma in animal models. Stem cell-free therapy using stem cell-derived trophic factors might be in demand in patients with high-risk conditions or religious restrictions. In this chapter, we describe methods for trabecular meshwork stem cell (TMSC) cultivation, secretome harvesting, and protein isolation, as well as assays to ensure the health of TMSC post-secretome harvesting and for secretome periocular injection into mice for therapeutic purposes.


Assuntos
Células-Tronco , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Animais , Camundongos , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo , Regeneração , Glaucoma/terapia , Transplante de Células-Tronco/métodos , Secretoma , Modelos Animais de Doenças , Glaucoma de Ângulo Aberto/terapia , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Técnicas de Cultura de Células/métodos
6.
Methods Mol Biol ; 2848: 197-214, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240525

RESUMO

Retinal pigment epithelium (RPE) cells derived from induced pluripotent stem cells (iPSCs) serve multiple roles, including among others, modeling RPE development in normal and pathological conditions, investigating mechanisms of RPE physiology, modeling retinal diseases involving the RPE, and developing strategies for regenerative therapies. We have developed a simple and efficient protocol to generate RPE tissue from human iPSCs-derived retinal organoids. The RPE tissue present in the retinal organoids is analogous to the native human RPE in differentiation timeline, histological organization, and key features of functional maturation. Building upon this system, we established a method to generate functionally mature, polarized RPE monolayers comparable to human primary RPE. This comprehensive protocol outlines the steps for isolating and culturing RPE tissue using retinal organoids. The outcome is a pure population of cells expressing mature RPE signatures and organized in a characteristic cobblestone monolayer featuring robust ultrastructural polarization. These RPE monolayers also exhibit the functional hallmarks of bona fide mature RPE cells, providing a suitable system to mimic the biology and function of the native human RPE.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Organoides , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Organoides/citologia , Organoides/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas
7.
Biomaterials ; 312: 122713, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39084096

RESUMO

Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 â†’ 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.


Assuntos
Reatores Biológicos , Campos Eletromagnéticos , Células-Tronco Mesenquimais , Osteogênese , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Perfilação da Expressão Gênica , Proliferação de Células , Diferenciação Celular , Células Cultivadas , Transcriptoma
8.
Biomaterials ; 312: 122720, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39084098

RESUMO

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Peptídeos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Osteoartrite/terapia , Osteoartrite/patologia , Nanopartículas/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Peptídeos/química , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese/efeitos dos fármacos , Camundongos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Engenharia Tecidual/métodos , Regeneração/efeitos dos fármacos
9.
Biomaterials ; 312: 122711, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39088911

RESUMO

The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.


Assuntos
Módulo de Elasticidade , Hidrogéis , Alicerces Teciduais , Uretra , Cicatrização , Alicerces Teciduais/química , Animais , Hidrogéis/química , Engenharia Tecidual/métodos , Camundongos , Regeneração , Cicatriz/patologia , Masculino , Microambiente Celular , Ratos Sprague-Dawley , Células-Tronco/citologia
10.
Biomaterials ; 312: 122715, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39094522

RESUMO

Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.


Assuntos
Diferenciação Celular , Matriz Extracelular , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Matriz Extracelular/metabolismo , Diferenciação Celular/genética , Humanos , Células Cultivadas , Animais
11.
Biomaterials ; 312: 122716, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121731

RESUMO

Meniscus is vital for maintaining the anatomical and functional integrity of knee. Injuries to meniscus, commonly caused by trauma or degenerative processes, can result in knee joint dysfunction and secondary osteoarthritis, while current conservative and surgical interventions for meniscus injuries bear suboptimal outcomes. In the past decade, there has been a significant focus on advancing meniscus tissue engineering, encompassing isolated scaffold strategies, biological augmentation, physical stimulus, and meniscus organoids, to improve the prognosis of meniscus injuries. Despite noteworthy promising preclinical results, translational gaps and inconsistencies in the therapeutic efficiency between preclinical and clinical studies exist. This review comprehensively outlines the developments in meniscus tissue engineering over the past decade (Scheme 1). Reasons for the discordant results between preclinical and clinical trials, as well as potential strategies to expedite the translation of bench-to-bedside approaches are analyzed and discussed.


Assuntos
Menisco , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Animais , Alicerces Teciduais/química , Pesquisa Translacional Biomédica
12.
Methods Mol Biol ; 2848: 187-196, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240524

RESUMO

In several ocular diseases, degeneration of retinal neurons can lead to permanent blindness. Transplantation of stem cell (SC)-derived RGCs has been proposed as a potential therapy for RGC loss. Although there are reports of successful cases of SC-derived RGC transplantation, achieving long-distance regeneration and functional connectivity remains a challenge. To address these hurdles, retinal organoids are being used to study the regulatory mechanism of stem cell transplantation. Here we present a modified protocol for differentiating human embryonic stem cells (ESCs) into retinal organoids and transplanting organoid-derived RGCs into the murine eyes.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas , Células Ganglionares da Retina , Humanos , Animais , Camundongos , Células-Tronco Embrionárias Humanas/citologia , Células Ganglionares da Retina/citologia , Transplante de Células-Tronco/métodos , Organoides/citologia , Organoides/transplante , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Retina/citologia , Células-Tronco Embrionárias/citologia
13.
Biomaterials ; 313: 122763, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39180917

RESUMO

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Assuntos
Cobre , Nanomedicina , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Nanomedicina/métodos , Cobre/química , Cobre/farmacologia , Linhagem Celular Tumoral , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Terapia Fototérmica/métodos , Humanos , Polímeros/química , Indóis/farmacologia
14.
J Orthop ; 59: 64-67, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39351264

RESUMO

Background: Automated broaching has recently been introduced for total hip arthroplasty (THA), with the goal of improving surgical efficiency and reducing surgeon workload. While studies have suggested that this technique may improve femoral sizing and alignment, little has been published regarding its safety, particularly with regard to calcar fractures. The purpose of our study was to evaluate the risk of calcar fracture during automated broaching, and to determine if this risk can be mitigated. Methods: We queried our prospective institutional database and identified 1596 unilateral THAs performed by the senior author using automated impaction between 2019 and 2023. We identified the incidence of calcar fracture with automated impaction, and whether the fracture occurred during broaching or stem insertion. We additionally determined calcar fracture incidence within two consecutive subgroups of patients using different stem insertion techniques; subgroup (1): automated broaching with automated stem insertion for all patients; versus subgroup (2): automated broaching with automated stem insertion ONLY if a cushion of cancellous bone separated the broach from the calcar, otherwise the stem was placed manually. Continuous and categorical variables were analyzed with Student's t-test and Fisher's exact test, respectively. Results: Seventeen calcar fractures occurred intraoperatively (1.1 %). Only two fractures occurred during automated broaching (0.1 %), while fifteen occurred during final stem impaction (0.9 %) (p = 0.007). Four calcar fractures (1.4 %) occurred in subgroup 1, compared to two in subgroup 2 (0.6 %) (p = 0.28). Conclusions: Our study found a calcar fracture incidence of 1.1 % using automated impaction, consistent with historically reported rates of 0.4-3.7 %. We found that calcar fractures are more likely to occur during stem insertion than during femoral broaching. We recommend that if any part of the final broach is in direct contact with the calcar, the final stem should be impacted manually to minimize fracture risk.

15.
Biomaterials ; 313: 122757, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39178558

RESUMO

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Assuntos
Matriz Extracelular , Fatores Imunológicos , Fibrose Pulmonar , Células-Tronco , Cápsulas/química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/terapia , Células Cultivadas , Humanos , Matriz Extracelular/química , Microfluídica , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Metaloproteinases da Matriz/metabolismo
16.
J Clin Exp Hepatol ; 15(1): 102408, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39391323

RESUMO

India is the country with the third largest transplantation activity in the world but has one of the lowest deceased donation rates. The Transplantation of Human Organs Act was first enacted as law 29 years ago, its implementation has been non-uniform and growth in deceased donation has been slow and heterogenous. This review discusses the concept of brain death, ethics of deceased donation and organ allocation, Indian legislation in this area and the regulatory structure of the National Organ transplantation program. We also discuss current status of deceased donation and deceased donor liver transplantation in the country, identify variation in liver allocation policies across Indian states and identify areas of need and potential solutions.

17.
Biomaterials ; 313: 122770, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226653

RESUMO

Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Polímeros , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Polímeros/química , Orientação de Axônios , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Propriedades de Superfície , Condutividade Elétrica , Fatores de Crescimento Neural/metabolismo , Axônios/metabolismo , Axônios/fisiologia
18.
Arch Acad Emerg Med ; 13(1): e2, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39318865

RESUMO

Introduction: Exosomes function as cell signaling carriers and have drawn much attention to the cell-free treatments of regenerative medicine. This meta-analysis aimed to investigate the efficacy of mesenchymal stem cell-derived (MSC-derived) exosomes in animal models of spinal cord injuries (SCI). Method: A comprehensive search was conducted in Medline, Embase, Scopus, and Web of Science to attain related articles published by January 31, 2023. The eligible keywords were correlated with the spinal cord injury and MSC-derived exosomes. The evaluated outcomes were locomotion, cavity size, cell apoptosis, inflammation, neuro-regeneration, and microglia activation. A standardized mean difference was calculated for each sample and a pooled effect size was reported. Results: 65 papers fully met the inclusion criteria. Treatment with MSC-derived exosomes ultimately improved locomotion and shrunk cavity size (p<0.0001). The administration of MSC-derived exosomes enhanced the expression of beta-tubulin III, NF200, and GAP-43, and increased the number of NeuN-positive and Nissl-positive cells, while reducing the expression of glial fibrillary acidic protein (p<0.0001). The number of apoptotic cells in the treatment group decreased significantly (p<0.0001). Regarding the markers of microglia activation, MSC-derived exosomes increased the number of CD206- and CD68-positive cells (p=0.032 and p<0.0001, respectively). Additionally, MSC-derived exosome administration significantly increased the expression of the anti-inflammatory interleukin (IL)-10 and IL-4 (p<0.001 and p=0.001, respectively) and decreased the expression of the inflammatory IL-1b, IL-6, and TNF-a (p<0.0001). Conclusion: MSC-derived exosome treatment resulted in a significantly improved locomotion of SCI animals through ameliorating neuroinflammation, reducing apoptosis, and inducing neuronal regrowth by facilitating a desirable microenvironment.

19.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003048

RESUMO

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Assuntos
Disruptores Endócrinos , Células-Tronco , Disruptores Endócrinos/toxicidade , Humanos , Células-Tronco/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Exposição Ambiental
20.
Artigo em Inglês | MEDLINE | ID: mdl-39350547

RESUMO

INTRODUCTION/OBJECTIVE: This study aimed to examine the effect of a human umbilical cord mesenchymal stem cell-derived exosome (hUC-MSC-Exo) liquid band-aid on wound healing in mice. METHODS: hUC-MSC-Exos were prepared from the supernatant via ion exchange chromatography. The composition ratio of the chitosan liquid band-aid was optimized to form a film and encapsulate hUC-MSC-Exo. The biological effects of chitosan exosome liquid band-aid on human umbilical vein endothelial cells (HUVECs) were observed, and its anti-bacterial properties were tested. BALB/c mice with back skin injury were randomly divided into chitosan exosome liquid band-aid group (CS-Exo), chitosan liquid band-aid group (CS), and normal saline control group (Con), and wound healing was evaluated post-treatment. Skin tissue samples posttreatment were collected for H&E staining. RESULTS: The hUC-MSC-Exo was prepared and characterized. The optimum conditions for film formation were 1% chitosan solution and 15% poloxamer 407/poloxamer 188 (pH 5.0 ~ 7.0). The chitosan exosome liquid band-aid promoted HUVEC proliferation and migration and markedly inhibited Escherichia coli and Staphylococcus aureus growth in vitro. In vivo, the wound healing rate in the CS-Exo group was higher than that in the Con and CS groups. Fourteen days post-treatment, the wounds completely healed, and hair grew normally, which was consistent with H&E results. Mouse weights in each group did not change significantly after administration, indicating that the chitosan exosome liquid band-aid had no obvious toxic side effects. CONCLUSION: Local chitosan exosome liquid band-aid application can promote wound healing in mice, and the mechanism could be related to hUC-MSC-Exo-induced vascular endothelial cell proliferation and migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...