Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 803
Filtrar
1.
Front Immunol ; 15: 1456891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39416774

RESUMO

Methyltransferase-like 3(METTL3), recognized as the primary N6-methyladenosine methyltransferase, influences cellular functions such as proliferation, migration, invasion, differentiation, and fate determination by regulating gene expression post-transcriptionally. Recent studies have highlighted the indispensability of METTL3 in various immune cells such as hematopoietic stem/progenitor cells, innate immune cells (monocytes, macrophages, dendritic cells), and adaptive immune cells (thymic epithelial cell, T cells, natural killer cells). However, a comprehensive summary and analysis of these findings to elucidate the relationship between METTL3 and the immune system is yet to be undertaken. Therefore, in this review, we systematically collate reports detailing the mechanism underlying the role of METTL3 in regulating various immune processes and examine the modification of METTL3 and its potential implications. This review suggests that METTL3 plays an essential role in the immune system, ranging from maintaining homeostasis to regulating functions. Collectively, this review provides a comprehensive analysis of the relationship between METTL3 and the immune system, serving convenient researchers to understand the frontiers of immunological research and facilitate future clinical applications.


Assuntos
Homeostase , Metiltransferases , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Homeostase/imunologia , Animais , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Imunidade Inata , Imunidade Adaptativa , Regulação da Expressão Gênica
2.
Heliyon ; 10(19): e38496, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39430537

RESUMO

Neural Stem Progenitor Cells (NSPCs) maintenance and neuronal cell differentiation are the two key aspects of sustained neurogenesis in the adult mammalian brain. Transcription factors (TFs) are known to regulate these biological processes under the influence of various neurotrophic factors. Understanding the role of key TF genes in regulating adult neurogenesis is essential for determining the functional complexity and neuronal diversity seen in the adult mammalian brain. Although several molecular mechanisms leading to adult neurogenesis have been reported, details on its transcriptional regulation are still limited. Our initial results showed that Ciliary Neurotrophic Factor (CNTF) induced neuronal differentiation in SVZ-derived NSPC cultures. To investigate further the role of CNTF in inducing the expression of TF genes related to adult neurogenesis and the potential pathways involved, whole transcriptome RNA-sequencing (RNA-seq) analysis was done in CNTF-treated Sub-ventricular Zone derived neurosphere cultures from the mouse brain. The study revealed 483 differentially expressed genes (DEGs), among which 33 DEGs were identified as coding for transcription factors (TFs). Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis revealed MAPK, PI3K-Akt, and FoxO as the significantly enriched signaling pathways. Gene co-expression network analysis identified five upregulated TF genes related to adult neurogenesis (Runx1, Hmga2, Fos, ID2, and Prrx1) in a single cluster, interacting with each other, and was also validated by quantitative PCR. Our data suggest several potential TFs that may act as critical regulators in the intrinsic transcriptional networks driving the adult neurogenesis process. Further investigation into these molecular regulators may yield a homogeneous population of neuronal progenitors for translational stem cell studies in the future.

3.
Front Oncol ; 14: 1438052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376992

RESUMO

Treatment with the hypomethylating agent 5-azacytidine (AZA) increases survival in high-risk (HR) myelodysplastic syndrome (MDS) patients, but predicting patient response and overall survival remains challenging. To address these issues, we analyzed mutational and transcriptional profiles in CD34+ hematopoietic stem/progenitor cells (HSPCs) before and following AZA therapy in MDS patients. AZA treatment led to a greater reduction in the mutational burden in both blast and hematological responders than non-responders. Blast and hematological responders showed transcriptional evidence of pre-treatment enrichment for pathways such as oxidative phosphorylation, MYC targets, and mTORC1 signaling. While blast non-response was associated with TNFa signaling and leukemia stem cell signature, hematological non-response was associated with cell-cycle related pathways. AZA induced similar transcriptional responses in MDS patients regardless of response type. Comparison of blast responders and non-responders to normal controls, allowed us to generate a transcriptional classifier that could predict AZA response and survival. This classifier outperformed a previously developed gene signature in a second MDS patient cohort, but signatures of hematological responses were unable to predict survival. Overall, these studies characterize the molecular consequences of AZA treatment in MDS HSPCs and identify a potential tool for predicting AZA therapy responses and overall survival prior to initiation of therapy.

4.
J Cell Mol Med ; 28(20): e70127, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39467998

RESUMO

Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.


Assuntos
Diferenciação Celular , Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteogênese , Espécies Reativas de Oxigênio , Transdução de Sinais , Células-Tronco , Tendões , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Ratos , Tendões/metabolismo , Tendões/patologia , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ratos Sprague-Dawley , Hiperóxia/metabolismo , Acetilcisteína/farmacologia
5.
Int Immunopharmacol ; 143(Pt 2): 113397, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39461237

RESUMO

BACKGROUND: Exosomes derived from primary chondrogenic stem/progenitor cells (CSPCs-EXOs) show promise in cartilage repair due to their immunomodulatory and regenerative properties. However, their specific therapeutic potential in osteoarthritis (OA), especially in modulating immune responses and enhancing chondrocyte function, requires further exploration. This study aims to clarify CSPCs-EXOs' effects on OA by investigating their role in chondrocyte proliferation, migration, inflammation inhibition, and cartilage regeneration. METHODS: A rat model of osteoarthritis was established using monosodium iodoacetate (MIA). CSPCs-EXOs were isolated and characterized before being administered to the OA rats. Comprehensive transcriptomic analysis was conducted to identify differentially expressed genes (DEGs) and signaling pathways influenced by CSPCs-EXOs. Histopathological evaluation of cartilage tissue, immunohistochemistry, and in vitro assays were performed to assess chondrocyte proliferation, migration, inflammation, and intracellular environmental changes. RESULTS: CSPCs-EXOs treatment significantly reduced OA-induced cartilage damage, shown by improved histopathological features, increased chondrocyte proliferation, migration, and enhanced cartilage matrix integrity. CSPCs-EXOs uniquely modulated immune pathways and enhanced cellular repair, setting them apart from traditional treatments. Transcriptomic analysis revealed regulation of immune response, inflammation, oxidative stress, and DNA repair pathways. CSPCs-EXOs downregulated inflammatory cytokines (TNF, IL-17) and upregulated pathways for cellular proliferation, migration, and metabolism. They also altered splicing patterns of DNA repair enzymes, indicating a role in boosting repair mechanisms. CONCLUSIONS: CSPCs-EXOs promote cartilage repair in osteoarthritis by modulating immune responses, inhibiting inflammation, and improving the intracellular environment. These findings emphasize their innovative therapeutic potential and offer key insights into their regenerative mechanisms, positioning CSPCs-EXOs as a promising strategy for OA treatment and a foundation for future clinical applications in cartilage tissue engineering and regenerative medicine.

6.
Biochem Biophys Res Commun ; 734: 150661, 2024 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-39243675

RESUMO

Hematopoietic stem progenitor cells (HSPCs) give rise to the hematopoietic system, maintain hematopoiesis throughout the lifespan, and undergo molecular and functional changes during their development and aging. The importance of hematopoietic stem cell (HSC) biology has led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of HSPCs throughout the murine lifetime still needs to be fully completed. Here, using mass spectrometry (MS)-based quantitative proteomics, we report on the dynamic changes in the proteome of HSPCs from four developmental stages in the fetal liver (FL) and the bone marrow (BM), including E14.5, young (2 months), middle-aged (8 months), and aging (18 months) stages. Proteomics unveils highly dynamic protein kinetics during the development and aging of HSPCs. Our data identify stage-specific developmental features of HSPCs, which can be linked to their functional maturation and senescence. Our proteomic data demonstrated that FL HSPCs depend on aerobic respiration to meet their proliferation and oxygen supply demand, while adult HSPCs prefer glycolysis to preserve the HSC pool. By functional assays, we validated the decreased mitochondrial metabolism, glucose uptake, reactive oxygen species (ROS) production, protein synthesis rate, and increased glutathione S-transferase (GST) activity during HSPC development from fetal to adult. Distinct metabolism pathways and immune-related pathways enriched in different HSPC developmental stages were revealed at the protein level. Our study will have broader implications for understanding the mechanism of stem cell maintenance and fate determination and reversing the HSC aging process.


Assuntos
Células-Tronco Hematopoéticas , Camundongos Endogâmicos C57BL , Proteômica , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteômica/métodos , Camundongos , Redes e Vias Metabólicas , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Feto/metabolismo , Feto/citologia , Senescência Celular , Mitocôndrias/metabolismo , Fígado/metabolismo , Fígado/embriologia , Fígado/citologia
7.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273510

RESUMO

A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-ß1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.


Assuntos
Colágeno Tipo I , Fibrina , Células-Tronco , Tendões , Alicerces Teciduais , Fator de Crescimento Transformador beta1 , Humanos , Tendões/citologia , Tendões/metabolismo , Alicerces Teciduais/química , Células-Tronco/metabolismo , Células-Tronco/citologia , Fibrina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Tendinopatia/metabolismo , Tendinopatia/patologia , Células Cultivadas , Colágeno Tipo III/metabolismo , Colágeno Tipo III/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Pessoa de Meia-Idade , Masculino , Sobrevivência Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Proteínas de Membrana
8.
Stem Cell Res Ther ; 15(1): 303, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278906

RESUMO

BACKGROUND: Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS: In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS: We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION: The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.


Assuntos
Células-Tronco Hematopoéticas , Proteômica , Espécies Reativas de Oxigênio , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Feto/metabolismo , Feto/citologia , Adulto , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Butionina Sulfoximina/farmacologia , Glutationa/metabolismo
9.
Blood Cells Mol Dis ; 110: 102895, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303397

RESUMO

Small molecules UM171 and SR1 have already been taken into clinically-oriented protocols for the ex vivo expansion of hematopoietic stem (HSCs) and progenitor (HPCs) cells. In order to gain further insight into their biology, in the present study we have assessed their effects, both individually and in combination, on the in vitro long-term proliferation and expansion of HSCs and HPCs contained within three different cord blood-derived cell populations: MNCs (CD34+ cells = 0.8 %), LIN- cells (CD34+ cells = 41 %), and CD34+ cells (CD34+ cells >98 %). Our results show that when added to cultures in the absence of recombinant stimulatory cytokines, neither molecule had any effect. In contrast, when added in the presence of hematopoietic cytokines, UM171 and SR1 had significant stimulatory effects on cell proliferation and expansion in cultures of LIN- and CD34+ cells. No significant effects were observed in cultures of MNCs. The effects of both molecules were more pronounced in cultures with the highest proportion of CD34+ cells, and the greatest effects were observed when both molecules were added in combination. In the absence of small molecules, cell numbers reached a peak by days 25-30, and then declined; whereas in the presence of UM171 or/and SR1 cell numbers were sustained up to day 45 of culture. Our results indicate that besides CD34+ cells, LIN- cells could also be used as input cells in clinically-oriented expansion protocols, and that using both molecules simultaneously would be a better approach than using only one of them.

10.
Radiother Oncol ; 201: 110562, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341503

RESUMO

BACKGROUND: Dopamine receptor antagonists have recently been identified as potential anti-cancer agents in combination with radiation, and a first drug of this class is in clinical trials against pediatric glioma. Radiotherapy causes cognitive impairment primarily by eliminating neural stem/progenitor cells and subsequent loss of neurogenesis, along with inducing inflammation, vascular damage, and synaptic alterations. Here, we tested the combined effects of dopamine receptor antagonists and radiation on neural stem/progenitor cells. METHODS: Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of EGFP, the effects of dopamine receptor antagonists alone or in combination with radiation on neural stem/progenitor cells were assessed in sphere-formation assays, extreme limiting dilution assays, flow cytometry and real-time PCR in vitro and in vivo in both sexes. RESULTS: We report that hydroxyzine and trifluoperazine exhibited sex-dependent effects on murine newborn neural stem/progenitor cells in vitro. In contrast, amisulpride, nemonapride, and quetiapine, when combined with radiation, significantly increased the number of neural stem/progenitor cells in both sexes. In vivo, trifluoperazine showed sex-dependent effects on adult neural stem/progenitor cells, while amisulpride demonstrated significant effects in both sexes. Further, amisulpride increased sphere forming capacity and stem cell frequency in both sexes when compared to controls. CONCLUSION: We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exists, making it a novel combination therapy against glioblastoma. Normal tissue toxicity following this treatment scheme likely differs depending on age and sex and should be taken into consideration when designing clinical trials.

11.
ACS Biomater Sci Eng ; 10(8): 4716-4739, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39091217

RESUMO

Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.


Assuntos
Cartilagem Articular , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Cartilagem Articular/fisiologia , Cartilagem Articular/citologia , Alicerces Teciduais/química , Regeneração/fisiologia , Animais , Células-Tronco Mesenquimais/citologia , Condrogênese/fisiologia , Materiais Biocompatíveis
12.
Sci Rep ; 14(1): 19654, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179703

RESUMO

Recently, we have reported that extracellular vesicles (EVs) from the bone marrow mesenchymal stromal cells (BM-MSC) of aplastic anemia (AA) patients inhibit hematopoietic stem and progenitor cell (HSPC) proliferative and colony-forming ability and promote apoptosis. One mechanism by which AA BM-MSC EVs might contribute to these altered HSPC functions is through microRNAs (miRNAs) encapsulated in EVs. However, little is known about the role of BM-MSC EVs derived miRNAs in regulating HSPC functions in AA. Therefore, we performed miRNA profiling of EVs from BM-MSC of AA (n = 6) and normal controls (NC) (n = 6) to identify differentially expressed miRNAs. The Integrated DEseq2 analysis revealed 34 significantly altered mature miRNAs, targeting 235 differentially expressed HSPC genes in AA. Hub gene analysis revealed 10 HSPC genes such as IGF-1R, IGF2R, PAK1, PTPN1, etc., which are targeted by EV miRNAs and had an enrichment of chemokine, MAPK, NK cell-mediated cytotoxicity, Rap1, PI3k-Akt, mTOR signalling pathways which are associated with hematopoietic homeostasis. We further showed that miR-139-5p and its target, IGF-1R (hub-gene), might regulate HSPC proliferation and apoptosis, which may serve as potential therapeutic targets in AA. Overall, the study highlights that AA BM-MSC EV miRNAs could contribute to impaired HSPC functions in AA.


Assuntos
Anemia Aplástica , Vesículas Extracelulares , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Anemia Aplástica/genética , Anemia Aplástica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Hematopoese/genética , Apoptose/genética , Células da Medula Óssea/metabolismo , Transdução de Sinais
13.
Stem Cells Dev ; 33(19-20): 551-561, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39028018

RESUMO

Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury. Our study revealed the expression of STC2 in NSPCs derived from the SVZ of the C57BL/6N mouse. In cultured SVZ-derived NSPCs, STC2 treatment significantly increased the number of Tuj1 and DCX-positive cells. Furthermore, STC2 injection into the lateral ventricle promoted the neuronal differentiation of NSPCs and migration to the olfactory bulb. Conversely, the STC2 knockdown produced the opposite effect. Further investigation showed that STC2 treatment enhanced AKT phosphorylation in cultured NSPCs, whereas STC2 inhibition hindered AKT activation. Notably, the neuronal differentiation induced by STC2 was blocked by the AKT inhibitor GSK690693, whereas the AKT activator SC79 reversed the impact of STC2 knockdown on neuronal differentiation. Our findings indicate that enhancing STC2 expression in SVZ-derived NSPCs facilitates neuronal differentiation, with AKT regulation potentially serving as a key intracellular target of STC2 signaling.


Assuntos
Diferenciação Celular , Proteína Duplacortina , Glicoproteínas , Peptídeos e Proteínas de Sinalização Intercelular , Ventrículos Laterais , Camundongos Endogâmicos C57BL , Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células Cultivadas , Movimento Celular/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Masculino
14.
Dev Cell ; 59(20): 2687-2703.e6, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39025061

RESUMO

Human blood vessel walls show concentric layers, with the outermost tunica adventitia harboring mesenchymal progenitor cells. These progenitor cells maintain vessel homeostasis and provide a robust cell source for cell-based therapies. However, human adventitial stem cell niche has not been studied in detail. Here, using spatial and single-cell transcriptomics, we characterized the phenotype, potential, and microanatomic distribution of human perivascular progenitors. Initially, spatial transcriptomics identified heterogeneity between perivascular layers of arteries and veins and delineated the tunica adventitia into inner and outer layers. From this spatial atlas, we inferred a hierarchy of mesenchymal progenitors dictated by a more primitive cell with a high surface expression of CD201 (PROCR). When isolated from humans and mice, CD201Low expression typified a mesodermal committed subset with higher osteogenesis and less proliferation than CD201High cells, with a downstream effect on canonical Wnt signaling through DACT2. CD201Low cells also displayed high translational potential for bone tissue generation.


Assuntos
Vasos Sanguíneos , Células-Tronco Mesenquimais , Nicho de Células-Tronco , Transcriptoma , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Transcriptoma/genética , Animais , Camundongos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citologia , Osteogênese/genética , Diferenciação Celular , Proliferação de Células , Túnica Adventícia/citologia , Túnica Adventícia/metabolismo , Via de Sinalização Wnt/genética
15.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064908

RESUMO

Adult neurogenesis involves the generation of functional neurons from neural progenitor cells, which have the potential to complement and restore damaged neurons and neural circuits. Therefore, the development of drugs that stimulate neurogenesis represents a promising strategy in stem cell therapy and neural regeneration, greatly facilitating the reconstruction of neural circuits in cases of neurodegeneration and brain injury. Our study reveals that compound A5, previously designed and synthesized by our team, exhibits remarkable neuritogenic activities, effectively inducing neurogenesis in neural stem/progenitor cells (NSPCs). Subsequently, transcriptome analysis using high-throughput Illumina RNA-seq technology was performed to further elucidate the underlying molecular mechanisms by which Compound A5 promotes neurogenesis. Notably, comparative transcriptome analysis showed that the up-regulated genes were mainly associated with neurogenesis, and the down-regulated genes were mainly concerned with cell cycle progression. Furthermore, we confirmed that Compound A5 significantly affected the expression of transcription factors related to neurogenesis and cell cycle regulatory proteins. Collectively, these findings identify a new compound with neurogenic activity and may provide insights into drug discovery for neural repair and regeneration.


Assuntos
Ciclo Celular , Hidrazonas , Células-Tronco Neurais , Neurogênese , Neurogênese/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Hidrazonas/farmacologia , Hidrazonas/química , Perfilação da Expressão Gênica , Regulação para Cima/efeitos dos fármacos , Camundongos , Transcriptoma , Regulação da Expressão Gênica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
16.
Sci Rep ; 14(1): 15757, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977772

RESUMO

Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.


Assuntos
Papio , Regeneração , Alicerces Teciduais , Bexiga Urinária , Animais , Bexiga Urinária/metabolismo , Alicerces Teciduais/química , Proteômica/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia
17.
Front Pharmacol ; 15: 1419797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994202

RESUMO

Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.

18.
Acta Histochem Cytochem ; 57(3): 89-100, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38988694

RESUMO

Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.

19.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005189

RESUMO

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Regeneração , Tendões , Alicerces Teciduais , Alicerces Teciduais/química , Tendões/citologia , Animais , Suínos , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Poliésteres/química
20.
Adv Healthc Mater ; : e2401512, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030889

RESUMO

Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...