Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893841

RESUMO

The strain gauge method and the digital image correlation (DIC) method are commonly employed for measuring strain in tested objects, including material specimens and structural elements. The optical method enables the assessment of 3D strain fields across the entire area of interest, achieved through cameras and advanced software. The study investigates both quasi-static strength tests and more advanced research of structures. It explores full-scale construction testing, featuring highly stressed components of new wagon designs. The paper reviews the benefits and challenges of using the DIC method to measure large-scale elements. Conducting full-scale object testing is characterized by significant complexity, often involving interactions between elements, complex loading conditions, and the influence of friction. Numerous factors affect the measurements. Therefore, to compare both methods, an initially standard shear by tensile test of CFRP composite was analyzed. The analysis of strain maps provides valuable visualization of deformation patterns occurring during construction loading. The strain gauge method was crucial for verifying the quality of the DIC measurements. The results obtained provide a detailed understanding of how the components behave, highlighting the versatility of digital image correlation technology. For strain values of 0.3% and above, a good match was obtained between optical and strain gauge measurements. Below this value, the results have less accuracy. The results obtained provide a detailed understanding of how the components behave, highlighting the versatility of digital image correlation technology. The error comparison and discussion between different measurement scenarios were conducted. The paper presents a developed methodology for measuring strain and displacement state in complex and crucial structural elements. The method can be applied to measurements of heavily loaded components used in the transportation industry; for example, in railways.

2.
ImplantNews ; 12(6): 789-794, nov.-dez. 2015. ilus, tab, graf
Artigo em Português | LILACS, BBO | ID: biblio-850952

RESUMO

Objetivo: analisar a influência da distribuição dos implantes nas microdeformações da mandíbula, no carregamento da infraestrutura da prótese total parafusada. Material e métodos: foram utilizados seis modelos de mandíbulas confeccionados em poliuretano, distribuídos em três grupos com dois modelos cada, nos quais foram instalados cinco implantes (protocolo de Brånemark) utilizando três configurações distintas. Grupo I: os implantes foram instalados com espaçamentos equidistantes de 9 mm entre eles. Grupo II: implantes intermediários foram instalados a 8 mm do implante mais distal. Grupo III: implantes intermediários foram instalados a 8 mm do implante mais anterior. Extensômetros (strain gauges) foram fixados nas áreas adjacentes aos implantes, para determinar as microdeformações ocorridas após o carregamento, e seis barras de Ni-Cr, que foram parafusadas nos implantes, foram confeccionadas. Uma força de 200 N foi aplicada em três pontos da barra: parte anterior, cantiléver direito e cantiléver esquerdo. As microdeformações apresentadas sob a forma de gráficos foram tabuladas e levadas a teste estatístico. Resultados: as maiores microdeformações ocorreram quando foram carregadas as extremidades (direita ou esquerda) da barra, e que não houve diferença significativa de microdeformações entre as três configurações estudadas. Conclusão: a distribuição de carga numa prótese total fixa parafusada sobre implantes ainda é complexa e deveria ser estudada em modelos clínicos correspondentes.


Objective: to analyze the influence of implant distribution on mandibular microdeformation upon loading of an infrastructure fabricated for a complete fixed, screw-retained, implant-supported dental prosthesis. Material and methods: six polyurethane mandibular models were made and distributed into three groups (n=2). Each model received five dental implants. Three distinct configurations were used; Group I: all implants were positioned 9 mm apart each other; Group II: the most central implants were placed 8 mm from the most distal implant. Group III: the most central implants were placed 8 mm from the most anterior implant. Strain gauges were affixed at implant adjacent areas to determine the microstrain values after loading. Six cast and laser-welded Ni-Cr infrastructures were fabricated and fastened to the dental implants with a 10 Ncm torque. A 200 N load was applied at three predetermined points: anterior portion, and at the right and left cantilevers. The Kruskal-Wallis test was used to compare microstrain values among groups. Results: 1) Forces applied at the cantilever induced microstrain around all dental implants, 2) The greatest deformations were observed at the right and left extremities and 3) With forces in the anterior portion, great deformation values were observed at the bone adjacent to the most posterior implants. However, no differences were seen for microstrain values among groups. Conclusions: load distribution for complete fixed, screw-retained, implantsupported prosthesis is still a complex factor and must be investigated in correspondent clinical models.


Assuntos
Implantes Dentários , Prótese Dentária Fixada por Implante , Osseointegração , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...