Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(4): 101331, 2024 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-39434920

RESUMO

Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.

2.
Adv Exp Med Biol ; 1415: 335-340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440053

RESUMO

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular dystrophy resulting from mutations in the gene CTRP5/C1QTNF5. A mouse model (Ctrp5+/-) for the most common S163R developed many features of human clinical disease. We generated a novel homozygous Ctrp5 gene knock-out (Ctrp5-/-) mouse model to further study the mechanism of L-ORD. The retinal morphology of these mice was evaluated by retinal imaging, light microscopy, and transmission electron microscopy (TEM) at 6, 11, and 18.5 mo. Expression of Ctrp5 was analyzed using immunostaining and qRT-PCR. The Ctrp5-/- mice showed lack of both Ctrp5 transcript and protein. Presence of a significantly larger number of autofluorescent spots was observed in Ctrp5-/- mice compared to the WT (P < 0.0001) at 19 mo. Increased RPE stress with vacuolization and thinning was observed as early as 6 mo in Ctrp5-/- mice. Further, ultrastructural analyses revealed a progressive accumulation of basal laminar sub-RPE deposits in Ctrp5-/- mice from 11 mo. The Ctrp5-/- mice shared retinal and RPE pathology that matches with that previously described for Ctrp5+/- mice suggesting that pathology in these mice results from the loss of functional CTRP5 and that the presence of CTRP5 is critical for normal RPE and retinal function.


Assuntos
Degeneração Macular , Degeneração Retiniana , Camundongos , Humanos , Animais , Degeneração Retiniana/patologia , Retina/patologia , Degeneração Macular/patologia , Mutação , Epitélio Pigmentado da Retina/patologia
3.
Front Nutr ; 10: 1124987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139441

RESUMO

The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·µg-1 at 10 days to 0.062 ± 0.043 ng·µg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.

4.
Ann Eye Sci ; 62021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791592

RESUMO

BACKGROUND: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch's membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application. METHODS: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength. RESULTS: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510-520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations. CONCLUSIONS: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.

5.
Aging Cell ; 18(6): e13011, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31385385

RESUMO

Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular degeneration characterized by the formation of sub-retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L-ORD results from mutations in the C1q-tumor necrosis factor-5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L-ORD pathology, we used a human cDNA library yeast two-hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM-Ch) from wild-type (Wt), heterozygous S163R Ctrp5 mutation knock-in (Ctrp5S163R/wt ), and homozygous knock-in (Ctrp5S163R/S163R ) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C-terminal PDZ-binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R-CTRP5 protein also binds to HTRA1 but is resistant to HTRA1-mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM-Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L-ORD pathology.


Assuntos
Colágeno/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Mutação , Degeneração Retiniana/genética , Animais , Senescência Celular/genética , Colágeno/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
6.
Proc Natl Acad Sci U S A ; 114(39): E8214-E8223, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28878022

RESUMO

Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby's fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich "drusen-like" composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE-ECM interface.


Assuntos
Lâmina Basilar da Corioide/patologia , Oftalmopatias Hereditárias/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/patologia , Drusas Retinianas/patologia , Epitélio Pigmentado da Retina/citologia , Cegueira/genética , Cegueira/patologia , Células Cultivadas , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Drusas do Disco Óptico/congênito , Drusas do Disco Óptico/patologia , Epitélio Pigmentado da Retina/patologia , Inibidor Tecidual de Metaloproteinase-3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...