Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(22): e2210788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949007

RESUMO

Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.

2.
Angew Chem Int Ed Engl ; 61(32): e202205129, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674197

RESUMO

A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp3 carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis-polyacetylene chains. The distance between these sp2 carbon atoms renders the phase metallic, and yields two well-nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of the sp2 carbons being key contributors to the electron-phonon coupling. The sp3 carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on-surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying the sp2 versus sp3 carbon content, and by doping.

3.
Small ; 18(22): e2201212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35396819

RESUMO

Superhard materials other than diamond and cubic boron nitride have been actively pursued in the past two decades. Cubic silicon carbide, i.e., ß-SiC, is a well-known hard material with typical hardness <30 GPa. Although nanostructuring has been proven to be effective in enhancing materials' hardness by virtue of the Hall-Petch effect, it remains a significant challenge to improve hardness of ß-SiC beyond the superhard threshold of 40 GPa. Here, the fabrication of nanocrystalline ß-SiC bulks is reported by sintering nanoparticles under high pressure and high temperature. These ß-SiC bulks are densely sintered with average grain sizes down to 10 nm depending on the sintering conditions, and the Vickers hardness increases with decreasing grain size following the Hall-Petch relation. Particularly, the bulk sintered under 25 GPa and 1400 °C shows an average grain size of 10 nm and an asymptotic Vickers hardness of 41.5 GPa. Boosting the hardness of ß-SiC over the superhard threshold signifies an important progress in superhard materials research. A broader family of superhard materials is in sight through successful implementation of nanostructuring in other hard materials such as BP.

4.
Adv Sci (Weinh) ; 7(16): 2000775, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832351

RESUMO

The recent theoretical prediction of a new compound, WB5, has spurred the interest in tungsten borides and their possible implementation in industry. In this research, the experimental synthesis and structural description of a boron-rich tungsten boride and measurements of its mechanical properties are performed. The ab initio calculations of the structural energies corresponding to different local structures make it possible to formulate the rules determining the likely local motifs in the disordered versions of the WB5 structure, all of which involve boron deficit. The generated disordered WB4.18 and WB4.86 models both perfectly match the experimental data, but the former is the most energetically preferable. The precise crystal structure, elastic constants, hardness, and fracture toughness of this phase are calculated, and these results agree with the experimental findings. Because of the compositional and structural similarity with predicted WB5, this phase is denoted as WB5- x . Previously incorrectly referred to as "WB4," it is distinct from earlier theoretically suggested WB4, a phase with a different crystal structure that has not yet been synthesized and is predicted to be thermodynamically stable at pressures above 1 GPa. Mild synthesis conditions (enabling a scalable synthesis) and excellent mechanical properties make WB5- x a very promising material for drilling technology.

5.
Materials (Basel) ; 13(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325861

RESUMO

A metastable sp3-bonded carbon allotrope, Penta-C20, consisting entirely of carbon pentagons linked through bridge-like bonds, was proposed and studied in this work for the first time. Its structure, stability, and electronic and mechanical properties were investigated based on first-principles calculations. Penta-C20 is thermodynamically and mechanically stable, with equilibrium total energy of 0.718 and 0.184 eV/atom lower than those of the synthesized T-carbon and supercubane, respectively. Penta-C20 can also maintain dynamic stability under a high pressure of 100 GPa. Ab initio molecular dynamics (AIMD) simulations indicates that this new carbon allotrope can maintain thermal stability at 800 K. Its Young's modulus exhibits mechanical anisotropy. The calculated ideal tensile and shear strengths confirmed that Penta-C20 is a superhard material with a promising application prospect. Furthermore, Penta-C20 is a direct band gap carbon based semiconducting material with band gap of 2.89 eV.

6.
Materials (Basel) ; 13(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260069

RESUMO

An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.

7.
ACS Appl Mater Interfaces ; 10(49): 42804-42811, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421601

RESUMO

Recently, the nanotwinned structure has attracted considerable attention because of unprecedented improvement in its mechanical properties, thermal stability, and other properties. Here, we introduce the nanotwinned structure between two superhard materials [diamond and cubic boron nitride (cBN)] and obtain a nanotwinned diamond/cBN multilayered material with ultrahigh strength and unprecedented ductility. Under continuous shear deformation, the stress and total energy in the material develop in a zigzag way because of atomic reconfiguration. Further research shows that atomic reconfiguration occurs preferentially in the cBN region, followed by that in the diamond region by partial slip, and finally occurs at the interface through alternate "exchange" of the positions of C and B atoms. This multilevel stress release model can account for the significant increase in the strain range and peak stress of nanotwinned materials. These results could provide available information for the design of superhard materials with multilevel resistance to plastic deformation.

8.
Materials (Basel) ; 11(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044407

RESUMO

Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values.

9.
Materials (Basel) ; 10(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027926

RESUMO

Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

10.
Materials (Basel) ; 9(6)2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773550

RESUMO

We systematically studied the physical properties of a novel superhard (t-C3N4) and a novel hard (m-C3N4) C3N4 allotrope. Detailed theoretical studies of the structural properties, elastic properties, density of states, and mechanical properties of these two C3N4 phases were carried out using first-principles calculations. The calculated elastic constants and the hardness revealed that t-C3N4 is ultra-incompressible and superhard, with a high bulk modulus of 375 GPa and a high hardness of 80 GPa. m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to Poisson's ratio, shear modulus, and Young's modulus. Moreover, m-C3N4 is a quasi-direct-bandgap semiconductor, with a band gap of 4.522 eV, and t-C3N4 is also a quasi-direct-band-gap semiconductor, with a band gap of 4.210 eV, with the HSE06 functional.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...