Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204509

RESUMO

Owing to their potential to transform traditional medical diagnostics and health monitoring, wearable biosensors have become an alternative evolutionary technology in the field of medical care. However, it is still necessary to overcome some key technique challenges, such as the selectivity, sensitivity, and stability of biometric identification. Herein, a novel, wearable electrochemical sensor based on a molecularly imprinted polymer (MIP) integrated with a copper benzene-1,3,5-tricarboxylate metal-organic framework (MOF) was designed for the detection of stress through the on-body monitoring of cortisol in sweat. The MOF was used as the substrate for MIP deposition to enhance the stability and sensitivity of the sensor. The sensor consisted of two layers, with a microfluidic layer as the top layer for spontaneous sweating and a modified electrode as the bottom layer for sensing. The sensor measured cortisol levels by detecting the current change that occurred when the target molecules bound to the imprinted cavities, using Prussian blue nanoparticles embedded in the MIP framework as the REDOX probe. The proposed sensor exhibited a linear detection range of 0.01-1000 nM with a detection limit of 0.0027 nM, and favorable specificity over other analogies. This facile anti-body free sensor showed excellent stability, and can be successfully applied for in situ cortisol monitoring.

2.
Biosens Bioelectron ; 203: 114039, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121444

RESUMO

Thread-based electrochemical immunosensor is fabricated for non-invasive detection of cortisol in sweat by immobilization of anti-cortisol on L-cys/AuNPs/MXene modified conductive thread electrode. MXene and AuNPs increase the surface area of conductive thread electrode and facilitate anti-cortisol immobilization leading to enhanced sensor sensitivity. Anti-cortisol is immobilized on L-cys/AuNPs/MXene modified electrode by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide coupling agents. The electrochemical detection of cortisol is based on the decrease of oxidation current towards the antigen-antibody binding interaction owing to blocking of electron transfer process by cortisol. Under the optimal conditions, this immunosensor offers high sensitivity, a wide linearity of 5-180 ng mL-1 and a detection limit of 0.54 ng mL-1 with negligible effect from interferences. Furthermore, this immunosensor provides high reproducibility and long-term storage stability (≥6 weeks). Ultimately, this system is successfully applied for the detection of cortisol in artificial sweat with satisfactory results. Hence, this platform might be suitable to apply as a wearable electrochemical sensor for sweat cortisol by integrating on a wristband.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro , Hidrocortisona , Imunoensaio/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Suor
3.
Proc Natl Acad Sci U S A ; 117(45): 27906-27915, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106394

RESUMO

Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.


Assuntos
Técnicas Biossensoriais/instrumentação , Microfluídica/métodos , Suor/química , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Impedância Elétrica , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Fluorometria , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Pele/química , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...