Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.853
Filtrar
1.
J Environ Sci (China) ; 150: 309-317, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306406

RESUMO

Modeling the fate and transport of organic pollutants at contaminated sites is critical for risk assessment and management practices, such as establishing realistic cleanup standards or remediation endpoints. Against the conventional wisdom that highly hydrophobic persistent organic pollutants (POPs) (e.g., polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons) in surface soils are essentially immobile, mounting evidence has demonstrated the potential of these contaminants leaching into the groundwater, due to enhanced transport by soil colloids. Here, we develop a Colloids-Enhanced Transport (CET) model, which can be used as a simple screening tool to predict the leaching potential of POPs into groundwater, as mediated by soil colloids. The CET model incorporates several processes, including the release of POPs-bearing colloids into the porewater, the vertical transport of colloids and associated POPs in the vadose zone, the mixing of POPs-containing soil leachate with groundwater, and the migration of POPs-bearing colloids in saturated zone. Thus, using parameters that can be easily obtained (e.g., annual rainfall, soil type, and common hydrogeological properties of the subsurface porous media), the CET model can estimate the concentrations of POPs in the saturated zone from the observed POPs concentrations in surface or shallow subsurface zones. The CET model can also be used to derive soil quality standards or cleanup endpoints by back-calculating soil concentrations based on groundwater protection limits.


Assuntos
Coloides , Monitoramento Ambiental , Água Subterrânea , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Poluentes do Solo , Solo , Poluentes Químicos da Água , Água Subterrânea/química , Coloides/química , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Solo/química , Poluentes Orgânicos Persistentes/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/química
2.
J Environ Sci (China) ; 150: 604-621, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306433

RESUMO

Recently, the transportation sector in China has gradually become the main source of urban air pollution and primary driver of carbon emissions growth. Considering air pollutants and greenhouse gases come from the same emission sources, it is necessary to establish an updated high-resolution emission inventory for the transportation sector in Central China, the most polluted region in China. The inventory includes on-road mobile, non-road mobile, oil storage and transportation, and covers 9 types of air pollutants and 3 types of greenhouse gases. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the emissions of pollutants were predicted for the period from 2020 to 2035 in different scenarios. Results showed that in 2020, emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, BC, OC, CO2, CH4, and N2O in Henan Province were 27.5, 503.2, 878.6, 20.1, 17.4, 222.1, 21.5, 9.4, 2.9, 92,077.9, 6.0, and 10.4 kilotons, respectively. Energy demand and pollutant emissions in Henan Province are simulated under four scenarios (Baseline Scenario (BS), Pollution Abatement Scenario (PA), Green Transportation Scenario (GT), and Reinforcing Low Carbon Scenario (RLC)). The collaborative emission reduction effect is most significant in the RLC scenario, followed by the GT scenario. By 2035, under the RLC scenario, energy consumption and emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, NH3, CO2, CH4, and N2O are projected to decrease by 72.0%, 30.0%, 55.6%, 56.0%, 38.6%, 39.7%, 51.5%, 66.1%, 65.5%, 55.4%, and 52.8%, respectively. This study provides fundamental data support for subsequent numerical simulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Gases de Efeito Estufa , China , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise , Meios de Transporte , Emissões de Veículos/análise
3.
J Environ Sci (China) ; 149: 431-443, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181655

RESUMO

To investigate the seasonal characteristics in air pollution in Chengdu, a single particle aerosol mass spectrometry was used to continuously observe atmospheric fine particulate matter during one-month periods in summer and winter, respectively. The results showed that, apart from O3, the concentrations of other pollutants (CO, NO2, SO2, PM2.5 and PM10) were significantly higher in winter than in summer. All single particle aerosols were divided into seven categories: biomass burning (BB), coal combustion (CC), Dust, vehicle emission (VE), K mixed with nitrate (K-NO3), K mixed with sulfate and nitrate (K-SN), and K mixed with sulfate (K-SO4) particles. The highest contributions in both seasons were VE particles (24%). The higher contributions of K-SO4 (16%) and K-NO3 (10%) particles occurred in summer and winter, respectively, as a result of their different formation mechanisms. S-containing (K-SO4 and K-SN), VE, and BB particles caused the evolution of pollution in both seasons, and they can be considered as targets for future pollution reduction. The mixing of primary sources particles (VE, Dust, CC, and BB) with secondary components was stronger in winter than in summer. In summer, as pollution worsens, the mixing of primary sources particles with 62 [NO3]- weakened, but the mixing with 97 [HSO4]- increased. However, in winter, the mixing state of particles did not exhibit an obvious evolution rules. The potential source areas in summer were mainly distributed in the southern region of Sichuan, while in winter, besides the southern region, the contribution of the western region cannot be ignored.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Estações do Ano , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Poluição do Ar/estatística & dados numéricos , Espectrometria de Massas , Tamanho da Partícula
4.
J Environ Sci (China) ; 149: 46-56, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181658

RESUMO

Phthalic acid esters (PAEs) are a group of compounds widespread in the environment. To investigate the occurrence and accumulation characteristics of PAEs, surface water samples were collected from the Three Gorges Reservoir area, China. The total concentrations of 11 analyzed PAEs (∑11PAEs) in the collected water samples ranging from 197.7 to 1,409.3 ng/L (mean ± IQR: 583.1 ± 308.4 ng/L). While DEHP was the most frequently detected PAE, DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3% of the ∑11PAEs. The concentrations of the ∑11PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from the middle reaches. To better understand the transport and fate of the PAEs, seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction (QWASI). The simulated and measured values were close for most PAEs, and differences are within one order of magnitude even for the worst one. For all simulated PAEs, water and particle inflow were main sources in the reservoir, whereas water outflow and degradation in water were important removal pathways. The contribution ratios of different sources/losses varied from PAEs, depending on their properties. The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based on monitoring or simulating results were all far exceeded the safety threshold value, implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.


Assuntos
Monitoramento Ambiental , Ésteres , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/análise , China , Poluentes Químicos da Água/análise , Ésteres/análise , Rios/química , Modelos Químicos
5.
J Environ Sci (China) ; 149: 663-675, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181676

RESUMO

Humic acid (HA), a principal constituent of natural organic matter (NOM), manifests ubiquitously across diverse ecosystems and can significantly influence the environmental behaviors of Cd(II) in aquatic systems. Previous studies on NOM-Cd(II) interactions have primarily focused on the immobilization of Cd(II) solids, but little is known about the colloidal stability of organically complexed Cd(II) particles in the environment. In this study, we investigated the formation of HA-Cd(II) colloids and quantified their aggregation, stability, and transport behaviors in a saturated porous media representative of typical subsurface conditions. Results from batch experiments indicated that the relative quantity of HA-Cd(II) colloids increased with increasing C/Cd molar ratio and that the carboxyl functional groups of HA dominated the stability of HA-Cd(II) colloids. The results of correlation analysis between particle size, critical aggregation concentration (CCC), and zeta potential indicated that both Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions contributed to the enhanced colloidal stability of HA-Cd(II) colloids. Column results further confirmed that the stable HA-Cd(II) colloid can transport fast in a saturated media composed of clean sand. Together, this study provides new knowledge of the colloidal behaviors of NOM-Cd(II) nanoparticles, which is important for better understanding the ultimate cycling of Cd(II) in aquatic systems.


Assuntos
Cádmio , Coloides , Substâncias Húmicas , Poluentes Químicos da Água , Substâncias Húmicas/análise , Cádmio/química , Coloides/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Nanopartículas Metálicas/química , Modelos Químicos , Nanopartículas/química
6.
J Colloid Interface Sci ; 677(Pt A): 294-306, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39094490

RESUMO

HYPOTHESIS: We propose to polymerize high water content hydroxyethyl methacrylate (HEMA) formulations in a rotating cylinder to explore the effect of the rotation on microstructure and critical parameters such as diffusivity of model proteins in porous poly-HEMA gels. EXPERIMENTS: Cylindrical molds were partially filled with water-HEMA-initiator-crosslinker mixtures and exposed to UV light while undergoing rotation to polymerize into a cylindrical tube. The process was repeated multiple times to manufacture a core annular rod with multiple concentric rings, in which at least one ring was porous. The porous gels were imaged by scanning electron microscopy to explore the microstructure. The transport of model proteins bovine serum albumin and human γ-globulin was measured and modeled, in radial and axial directions, to obtain the effective diffusivity and partition coefficient. Also, the true diffusivity of proteins was calculated by accounting for the effects of porosity and tortuosity. FINDINGS: The porous gels exhibited diffusion-controlled release of both model proteins. The hydrogels prepared with 55% water in the monomer mixture were porous with non-isotropic structure likely due to axially oriented pores with minimal radial connectivity. The gels with higher water content were isotropic with interconnected pores in both directions. The pore volume increased with water content, but the partition coefficient was relatively constant and less than one likely due to presence of isolated unconnected pores.

7.
J Environ Sci (China) ; 148: 541-552, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095187

RESUMO

The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.


Assuntos
Águas Salinas , Salinidade , Água do Mar , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Água do Mar/química , Águas Salinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Porosidade , Microplásticos , Modelos Químicos , Nanopartículas Metálicas/química
8.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095193

RESUMO

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , China , Microplásticos/análise , Poluentes Atmosféricos/análise , Cidades , Atmosfera/química , Tamanho da Partícula
9.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003087

RESUMO

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Assuntos
Coloides , Retardadores de Chama , Água Subterrânea , Éteres Difenil Halogenados , Poluentes do Solo , Solo , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Coloides/química , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Poluentes Químicos da Água/análise , China , Retardadores de Chama/análise , Monitoramento Ambiental , Modelos Químicos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125022, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186876

RESUMO

The highly adaptable optoelectronic and morphological properties of non-fullerene acceptors (NFAs) have made them a prominent research topic in the organic solar cell (OSC) field. This work describes the design of new molecules and investigates the potential optoelectronic aspects of remodified Y-series NFAs endowing with five new semi-circular shaped derivatives (BTPB1-BTPB5) based on the DFT-based quantum simulations. The designed molecules possess higher-lying LUMO energy levels with narrowed bandgaps and excellent coherence between the acceptor and core via inserted bridges. The molecules demonstrate a significant red shift and a wide-ranging absorption spectrum extending from 400 nm to 1500 nm, with the most extensive absorption occurring in the near-infrared (NIR) region. Effective π-π stacking and drastically lower binding energy certify facile charge dissociation and transmission rate. Thiophene-based bridge modification decreased reorganization energy by 47 % which results in facile charge transmission and high current density. Theoretically, simulated PCE is achieved as high as 31.49 % owing to the higher-lying LUMOs. The results demonstrate the value of designing systems and exploring new possibilities for developing effective Y-series NFAs-based high-performance organic solar cells.

11.
Drug Metab Rev ; : 1-10, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350738

RESUMO

Pleuropterus multiflorus root (PMR, Polygoni Multiflori Radix) is an herbal medicine widely used in East Asia, particularly China. However, the potential hepatotoxicity has hindered its rational and safe application of PMR in clinical practice. Recently, the hepatotoxic study of PMR have made great progress, especially drug metabolism and transport-mediated liver injury. In this review, we summarized the advancement of drug metabolism and transport regluated hepatic injury of PMR, pointed out the key role of drug metabolizing enzymes and transporters in regulating hepatic injury of PMR, and emphasized the main hepatotoxic substances, toxicity promoter, and hepatic toxic substance-toxicity promoter interactions in PMR. On this basis, the clinical prospect of preventing and treating hepatic injury of PMR from the perspective of metabolism and transporter was discussed, to provide a useful reference and theoretical basis for the prevention and treatment of hepatic injury of PMR.

12.
New Phytol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352455

RESUMO

Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.

13.
Mol Plant ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354718

RESUMO

Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that poses a serious threat to human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice to mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL-gene, OsCS1, that is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network (TGN) to pre-vacuolar compartments (PVCs) and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and eventually sequesters it in vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Our findings fill a gap in the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.

14.
Int J Hyg Environ Health ; 263: 114477, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378553

RESUMO

This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Stool samples from infected patients were used as endogenous viral material to more accurately mirror real-world decay processes compared to more traditionally used lab-propagated spike-ins. As such, this study includes data on early decay stages of endogenous viral targets in wastewaters that are typically overlooked when performing decay studies on wastewaters harvested from wastewater treatment plants that contain already-degraded endogenous material. The two distinct sewer transport conditions of dynamic suspended sewer transport and bed and near-bed sewer transport were simulated in this study at temperatures of 4 °C, 12 °C and 20 °C to elucidate decay under these two dominant transport conditions within wastewater infrastructure. The dynamic suspended sewer transport was simulated over 35 h, representing typical flow conditions, whereas bed and near-bed transport extended to 60 days to reflect the prolonged settling of solids in sewer systems during reduced flow periods. In dynamic suspended sewer transport, no decay was observed for SARS-CoV-2, PMMoV, or total RNA over the 35-h period, and temperature ranging from 4 °C to 20 °C had no noticeable effect. Conversely, experiments simulating bed and near-bed transport conditions revealed significant decreases in SARS-CoV-2 and total RNA concentrations by day 2, and PMMoV concentrations by day 3. Only PMMoV exhibited a clear trend of increasing decay constant with higher temperatures, suggesting that while temperature influences decay dynamics, its impact may be less significant than previously assumed, particularly for endogenous RNA that is bound to dissolved organic matter in wastewater. First order decay models were inadequate for accurately fitting decay curves of SARS-CoV-2, PMMoV, and total RNA in bed and near-bed transport conditions. F-tests confirmed the superior fit of the two-phase decay model compared to first order decay models across temperatures of 4 °C-20 °C. Finally, and most importantly, total RNA normalization emerged as an appropriate approach for correcting the time decay of SARS-CoV-2 exposed to bed and near-bed transport conditions. These findings highlight the importance of considering decay from the point of entry in the sewers, sewer transport conditions, and normalization strategies when assessing and modelling the impact of viral decay rates in wastewater systems. This study also emphasizes the need for ongoing research into the diverse and multifaceted factors that influence these decay rates, which is crucial for accurate public health monitoring and response strategies.

15.
Water Res ; 268(Pt A): 122585, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39378747

RESUMO

In electro-mediated biological system (EMBS), biological anode and cathode components were incorporated into an anaerobic bioreactor, providing a small amount of oxygen to the cathode as an electron acceptor. Oxygen diffusion also impacts the anode's anaerobic ecological environment. This study unraveled how oxygen influences the metabolism and electron transport chain during the biological oxidation of refractory organics. Under the influence of electromotive force, the straight-chain model pollutant N,N-dimethylformamide (DMF) showed rapid degradation and better ammonification, with maximum rates reaching 0.53 h-1 and 26.6 %, respectively. Elevated electromotive force promoted the enrichment of functional electroactive bacteria on the anode and enhanced the availability of electron storage sites, thereby facilitating electron transfer at the anode-biofilm interface. Conversely, the anodic micro-aerobic environment disrupted the anaerobic microbial community structure, and the competitive interactions among fermentative bacteria and electroactive bacteria inhibited DMF degradation. Metagenomic analysis confirmed that cathodic oxygen up-regulated the pyruvate metabolism and the tricarboxylic acid (TCA) cycle to generate NADH and synthesize ATP. The electromotive force induced by cathodic oxygen accelerated the electron transfer in respiratory chains of electroactive bacteria, driving the oxidation of NADH and enhancing the degradation of organics. This study improves our understanding of the regulatory mechanisms governing metabolic pathways under the influence of cathodic oxygen. It offers potential for developing more efficient EMBS in industrial wastewater pretreatment, ensuring that oxygen is prevented from diffusing to the anode during micro-aeration at the cathode.

16.
J Environ Manage ; 370: 122552, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378815

RESUMO

Nanoscale zero-valent iron (nZVI) particles are routinely used for environmental remediation, but their transport dynamics in different settings remain unclear, hindering optimization. This study introduces a novel approach to predicting nZVI transport in saturated porous model environment. The method employs advanced long column devices for real-time monitoring via controlled magnetic susceptibility measurements. Numerical modeling with a modified version of the MNMs 2023 software was then used to predict nZVI and its derivatives mobility in field-like conditions, offering insights into the radius of influence (ROI) and shape factor (SF) of their distribution. A standard nZVI precursor was compared with its four major commercial derivatives: nitrided, polyacrylic acid-coated, oxide-passivated, and sulfidated nZVI. All these iron-based nanoparticles exhibited identical particle sizes, morphologies, surface areas, and phase compositions, isolating surface properties, dominated by charge, as the sole variable affecting their mobility. The study revealed optimal transport when the surface charge of nZVI and its derivatives was strongly negative, while rapid aggregation of nZVI derivatives due magnetic attraction reduced their mobility. Modeling predictions based on column scale-up, indicated that detectable concentrations of 20 g L⁻1 were found at distances ranging from 0.4 to 1.1 m from the injection well. Slightly sulfidated nZVI traveled farther than the nZVI precursor and ensured more homogenous particle distribution around the well. Organically modified nZVI migrated the longest distances but showed particle accumulation close to the injection point. The findings suggest that minimal sulfidation combined with organic modification of nZVI surfaces may effectively enhance radial and vertical nZVI distribution in aquifers. Such improvements increase the commercial viability of modified nZVI, reduce their adverse impacts, and boosts their practical applications in real-world scenarios.

17.
Cell Syst ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39378875

RESUMO

Spatially resolved transcriptomics (SRT) combines gene expression profiles with the physical locations of cells in their native states but suffers from unpredictable spatial noise due to cell damage during cryosectioning and exposure to reagents for staining and mRNA release. To address this noise, we developed SpotGF, an algorithm for denoising SRT data using optimal transport-based gene filtering. SpotGF quantifies diffusion patterns numerically, distinguishing widespread expression genes from aggregated expression genes and filtering out the former as noise. Unlike conventional denoising methods, SpotGF preserves raw sequencing data, thereby avoiding false positives that can arise from imputation. Additionally, SpotGF demonstrates superior performance in cell clustering, identifying potential marker genes, and annotating cell types. Overall, SpotGF has the potential to become a crucial preprocessing step in the downstream analysis of SRT data. The SpotGF software is freely available at GitHub. A record of this paper's transparent peer review process is included in the supplemental information.

18.
Sci Rep ; 14(1): 23459, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379575

RESUMO

Improving travel time by public transport is a major task for city planners and policy makers to increase its competitiveness relative to cars which can be facilitated by implementing public transport preferential infrastructure treatments such as signal priority. We study the impact of one such preferential treatment, signal priority, on accessibility to jobs between 2015 and 2022 in Warsaw, Poland, which implemented signal priority on 187 intersections during this time period. We develop a method to extract inter-stop travel times from the General Transit Feed Service. We find that signal priority implementation lead to (1) a travel time decrease over the network by 6.7%, (2) an increase in accessibility by 5-8.5%, (3) a full signal priority setting drives the accessibility change over time, and (4) the location of SP and travel time segments at the entry point to high-density jobs drives accessibility change. Our analysis provides a method to help decision makers evaluate the impact of signal priority on accessibility to jobs. Our results indicate significant effectiveness of signal priority implementation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39382808

RESUMO

Surface water contamination by fecal matter threatens human health due to human and biological processes within a watershed, making socioeconomic development crucial for predicting and improving microbiological water quality. Consequently, climate change alters climatic parameters that affect flow regimes and the movement and fate of microorganisms. This study assessed the fate and transport of microbial Escherichia coli (E. coli) concentrations and their sources in the Tano River Basin in Ghana. Additionally, the study predicted future E. coli concentrations using climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC)'s most recent representative concentration pathways (RCPs) and shared socioeconomic pathways (SSPs). Scenario_1 featured planned urbanization, enhanced manure and wastewater treatment, moderate population, livestock density growth, and climate change. Scenario_2 involved higher population growth, minimal improvements in wastewater management, zero manure treatment, higher livestock population, urbanization, and substantial climate change. Calibration and validation using E. coli data from June 2022 to April 2023 showed good agreement with observed concentrations (R2, 0.75 and 0.89; NSE, 0.69 and 0.68; PBIAS, 3.4 and 1.9, respectively). The measured and modeled E. coli concentrations were high, with the highest recording at 2.39 log cfu/100 ml during the rainy season. The study finds that the main causes of E. coli concentrations (44%) are point sources, primarily from human feces and livestock manure, followed by upstream pollution (34%) and non-point sources (22%). Non-point sources became the predominant contributors during periods of maximum discharge due to runoff from land and the dilution of point sources. Again Scenario_1 E. coli dropped to 68% and 97% of reference point levels by the 2050s and 2100s, respectively. E. coli concentrations decrease even more with subsequent treatment, such as tertiary treatment, manure treatment, or both. The scenario analysis demonstrates the potential for E. coli reduction through wastewater and manure treatment, driven by socioeconomic and climate change scenarios.

20.
Front Cell Dev Biol ; 12: 1444953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372952

RESUMO

In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in Drosophila photoreceptor cells to study the role of Rab proteins in TRPL recycling. TRPL is located in the rhabdomeric membrane of dark-adapted flies, but it is transported out of the rhabdomere upon light exposure and localizes at the Endoplasmatic Reticulum within 12 h. Upon subsequent dark adaptation, TRPL is recycled back to the rhabdomeric membrane within 90 min. To screen for Rab proteins involved in TRPL recycling, we established a tissue specific (ts) CRISPR/Cas9-mediated knock-out of individual Rab genes in Drosophila photoreceptors and assessed TRPL localization using an eGFP tagged TRPL protein in the intact eyes of these mutants. We observed severe TRPL recycling defects in the knockouts of Rab3, Rab4, Rab7, Rab32, and RabX2. Using immunohistochemistry, we further showed that Rab3 and RabX2 each play a significant role in TRPL recycling and also influence TRPL transport. We localized Rab3 to the late endosome in Drosophila photoreceptors and observed disruption of TRPL transport to the ER in Rab3 knock-out mutants. TRPL transport from the ER to the rhabdomere ensues from the trans-Golgi where RabX2 is located. We observed accumulated TRPL at the trans-Golgi in RabX2 knock-out mutants. In summary, our study reveals the requirement of specific Rab proteins for different steps of TRPL transport in photoreceptor cells and provides evidence for a unique retrograde recycling pathway of TRPL from the ER via the trans-Golgi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...