Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.205
Filtrar
1.
Biotechnol J ; 19(9): e2400394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246125

RESUMO

The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.


Assuntos
Polietilenoglicóis , Polietilenoglicóis/química , Humanos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/isolamento & purificação , Cloreto de Sódio/química , DNA/química , DNA/isolamento & purificação , Polímeros/química , Biópsia Líquida/métodos , Sais/química
2.
Anal Sci Adv ; 5(7-8): e2400006, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39221001

RESUMO

Enterolactone, coumaric acid and vitexin are polyphenolic compounds present in a variety of fruits, vegetables, cereals and plants. These bioactive compounds are in high demand due to their antioxidant property in various tissues and organs. The purpose of this study was to develop a simultaneous extraction method, an aqueous two-phase extraction (ATPE) method, that would enable the extraction of these compounds from Hypoxis iridifolia. This environmentally friendly extraction method only applied water and ethanol as extraction solvents for these analytes from the plant matrix. After phase separation, the analytes were salted-out from the aqueous phase into the organic phase with the aid of a chaotrope (NaCl) or kosmotrope (Na2CO3). Thereafter, the analytes were withdrawn by a micro-pipette for analysis on the high-performance liquid chromatography-photodiode array detector. Optimization was conducted using a central composite design, where three parameters were examined which involved percentage ethanol, centrifugation time and salt type. Generally, the optimized conditions for extraction were an ethanol percentage of 100% and a centrifugation time of 10 min, which yielded concentrations of 2942, 23,823 and 8881 mg kg-1 for enterolactone, vitexin and coumaric acid, respectively, in the presence of a kosmotrope. The optimized conditions of extraction in the presence of chaotrope were an ethanol percentage of 66% and a centrifugation time of 10 min with concentrations of 6727, 20,833 and 8618 mg kg-1 for enterolactone, vitexin and coumaric acid, respectively. The ATPE method involving Na2CO3 was a better extractant of all the compounds studied relative to that of NaCl. The superior extraction capability of Na2CO3 in ATPE could serve as a prototype for the development of efficient extraction methods to meet the high demand for medicinal compounds derived from natural products.

3.
Food Chem ; 462: 141024, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39217751

RESUMO

With the aim of expanding the potential application scope of mulberries, eleven pH-switchable deep eutectic solvents were screened for the ultrasonic-assisted extraction of mulberry polysaccharides, and a salt/salt aqueous two-phase system was constructed for the efficient separation of mulberry polysaccharides by regulating the system pH. DES-9 (tetraethylammonium chloride: octanoic acid molar ratio = 1: 2) with a critical response pH value of approximately 6.1 was concluded to be the best extraction solvent for extracting mulberry polysaccharides. A maximum polysaccharide extraction yield of 270.71 mg/g was obtained under the optimal conditions. The maximum polysaccharide extraction efficiency was 78.09 % for the pH-driven tetraethylammonium chloride/K2HPO4 aqueous two-phase system. An acidic ß-pyran mulberry polysaccharide with a low-molecular weight of 9.26 kDa and a confirmed monosaccharide composition were obtained. This efficient and environmentally friendly polysaccharide separation method offers a new approach for the efficient extraction and utilization of other plant polysaccharides.

4.
Stat Methods Med Res ; : 9622802241268601, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105419

RESUMO

The case-cohort design is a commonly used cost-effective sampling strategy for large cohort studies, where some covariates are expensive to measure or obtain. In this paper, we consider regression analysis under a case-cohort study with interval-censored failure time data, where the failure time is only known to fall within an interval instead of being exactly observed. A common approach to analyzing data from a case-cohort study is the inverse probability weighting approach, where only subjects in the case-cohort sample are used in estimation, and the subjects are weighted based on the probability of inclusion into the case-cohort sample. This approach, though consistent, is generally inefficient as it does not incorporate information outside the case-cohort sample. To improve efficiency, we first develop a sieve maximum weighted likelihood estimator under the Cox model based on the case-cohort sample and then propose a procedure to update this estimator by using information in the full cohort. We show that the update estimator is consistent, asymptotically normal, and at least as efficient as the original estimator. The proposed method can flexibly incorporate auxiliary variables to improve estimation efficiency. A weighted bootstrap procedure is employed for variance estimation. Simulation results indicate that the proposed method works well in practical situations. An application to a Phase 3 HIV vaccine efficacy trial is provided for illustration.

5.
HardwareX ; 19: e00558, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39114296

RESUMO

Two-phase cooling devices are used to remove and dissipate heat from high power-density electronic systems to maintain them within their operating temperature limits. The manufacture of these devices, such as heat pipes, thermosyphons or vapour chambers, involves firstly removing any internal air or non-condensable gases before charging with the required volume of working fluid. This paper presents detailed designs and operating instructions for a single bench-top station for use in a laboratory environment for the vacuum evacuation, degassing and charging of these devices. Two configurations allow for the filling of fluids which are either liquids or gases at standard temperature and pressure conditions. For liquids, the dispensed volume can be measured directly on an integrated burette, while the method of vapour transfer is used for gases. The hardware was demonstrated by filling multiple thermosyphon devices with a number of common working fluids used in two-phase systems, including water, acetone and ammonia. It was shown to deliver precise and repeatable filling volumes with average differences compared to target volumes of 1.7% and 10.5% for liquids and gases respectively. The design is intended to be highly customisable where its size can be modified to accommodate filling volume requirements for different applications.

6.
Front Chem ; 12: 1433727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156219

RESUMO

Epoxy resins, known for their excellent properties, are widely used thermosetting resins, but their tendency towards brittle fracture limits their applications. This study addresses this issue by preparing graphene oxide via the Hummer method, modifying it with hyperbranched polyamide ester, and reducing it with hydrazine hydrate to obtain functionalized graphene. This functionalized graphene improves compatibility with epoxy resin. Using a novel two-phase extraction method, different ratios of functionalized graphene/epoxy composites were prepared and tested for mechanical properties and thermal stability. The results showed significant improvements: the tensile strength of composites with 0.1 wt% functionalized graphene increased by 77% over pure epoxy resin, flexural strength by 56%, and glass transition temperature by 50°C. These enhancements, attributed to the improved compatibility between graphene and epoxy resin, demonstrate the potential of functionalized graphene to mitigate the brittleness of epoxy resins, expanding their application potential.

7.
Sensors (Basel) ; 24(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123826

RESUMO

Finger vein recognition methods, as emerging biometric technologies, have attracted increasing attention in identity verification due to their high accuracy and live detection capabilities. However, as privacy protection awareness increases, traditional centralized finger vein recognition algorithms face privacy and security issues. Federated learning, a distributed training method that protects data privacy without sharing data across endpoints, is gradually being promoted and applied. Nevertheless, its performance is severely limited by heterogeneity among datasets. To address these issues, this paper proposes a dual-decoupling personalized federated learning framework for finger vein recognition (DDP-FedFV). The DDP-FedFV method combines generalization and personalization. In the first stage, the DDP-FedFV method implements a dual-decoupling mechanism involving model and feature decoupling to optimize feature representations and enhance the generalizability of the global model. In the second stage, the DDP-FedFV method implements a personalized weight aggregation method, federated personalization weight ratio reduction (FedPWRR), to optimize the parameter aggregation process based on data distribution information, thereby enhancing the personalization of the client models. To evaluate the performance of the DDP-FedFV method, theoretical analyses and experiments were conducted based on six public finger vein datasets. The experimental results indicate that the proposed algorithm outperforms centralized training models without increasing communication costs or privacy leakage risks.


Assuntos
Algoritmos , Dedos , Veias , Humanos , Dedos/irrigação sanguínea , Dedos/fisiologia , Veias/fisiologia , Aprendizado de Máquina , Identificação Biométrica/métodos
8.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124351

RESUMO

Experiments on specimen cooling dynamics and possible film boiling around a body are very important in various industrial applications, such as nucleate boiling, to decrease drag reduction or achieve better surface properties in coating technologies. The objective of this study was to investigate the interaction between the heat transfer processes and cooling dynamics of a sample in different boundary conditions. This article presents new experimental data on specimens coated with Al-TiO2 film and Leidenfrost phenomenon (LP) formation on the film's surface. Furthermore, this manuscript presents numerical heat and mass transfer parameter results. The comparative analysis of new experiments on Al-TiO2 film specimens and other coatings such as polished aluminium, Al-MgO, Al-MgH2 and Al-TiH2 provides further detail on oxide and hydride materials. In the experimental cooling dynamics experiments, specimens were heated up to 450 °C, while the sub-cooling water temperatures were 14*‒20 °C (room temperature), 40 °C and 60 °C. The specimens' cooling dynamics were calculated by applying Newton's cooling law, and heat transfer was estimated by calculating the heat flux q transferred from the specimens' surface and the Bi parameter. The metadata results from the performed experiments were used to numerically model the cooling dynamics curves for different material specimens. Approximated polynomial equations are proposed for the polished aluminium, Al-TiO2, Al-MgO, Al-MgH2 and Al-TiH2 materials. The provided comparative analysis makes it possible to see the differences between oxides and hydrides and to choose materials for practical application in the industrial sector. The presented results could also be used in software packages to model heat transfer processes.

9.
Insects ; 15(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39194802

RESUMO

Monochamus saltuarius Gebler is a serious insect pest in Europe and East Asia regions, including Portugal, Spain, China, Japan, and Korea. It transfers the pine wood nematode Bursaphelenchus xylophilus to conifer trees, resulting in pine wilt disease (PWD). As temperature is a key factor influencing insect population dynamics, temperature-dependent models describing M. saltuarius oviposition could estimate population growth potential and evaluate outbreak risks. In this study, the longevity and fecundity of M. saltuarius females were measured under constant temperature conditions ranging from 20 to 32 °C, and temperature-dependent models were constructed. The longevity of M. saltuarius females ranged from 83.36 days to 22.92 days, with a total fecundity of 141 eggs and 52.77 eggs at 20 °C and 32 °C, respectively. To describe oviposition, we used a single-phase simulation describing oviposition as a single model and a two-phase simulation describing sexual maturation and oviposition as two separate models. These models effectively described M. saltuarius oviposition (r2 > 0.96) under constant temperature conditions, with the two-phase simulation demonstrating greater accuracy overall. Such models could facilitate assessments of PWD risks. The modeling framework of this study shows potential for predicting threats from various forestry and agricultural pests.

10.
J Gen Appl Microbiol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39135242

RESUMO

Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C0) =1600 mg/L, bacterial liquid concentration (OD600) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R2=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.

11.
Molecules ; 29(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202854

RESUMO

In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.


Assuntos
Biotransformação , Enzimas , Extração Líquido-Líquido , Extração Líquido-Líquido/métodos , Enzimas/metabolismo , Enzimas/química , Enzimas/isolamento & purificação , Solventes/química , Líquidos Iônicos/química , Água/química , Termodinâmica
12.
Micromachines (Basel) ; 15(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39203676

RESUMO

To enhance the performance of tubular microbubble generators, the Volume of Fluid (VOF) multiphase flow model in COMSOL Multiphysics was used to simulate the bubble fragmentation characteristics within a throttling hole microbubble generator. The effects of the inlet speed of the throttling hole pipe, the diameter of the throttling hole, and the length of the expansion section on bubble fragmentation performance were analyzed. The results indicated that an increase in the inlet speed of the throttling hole pipe gradually improved the bubble fragmentation performance. However, an increase in the throttling hole diameter significantly reduced the bubble fragmentation performance. Changes in the length of the expansion section had a minor impact on the bubble fragmentation performance. Experimental methods were used to verify the characteristics of bubble fragmentation, and it was found that the simulation and experimental results were consistent. This provides a theoretical basis and practical guidance for the design optimization of tubular microbubble generators.

13.
Ann Appl Stat ; 18(3): 1858-1878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39149424

RESUMO

Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment in clinical research. However, how to optimally select a cohort from millions of individuals to answer a scientific question of interest remains unclear. Consider a study to estimate the mean or mean difference of an expensive outcome. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively, which may improve efficiency in downstream analyses. In this paper we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multiphase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling design, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain from our sampling design via simulation studies and an application evaluating the prevalence of hypertension among U.S. adults leveraging data from the Michigan Genomics Initiative, a longitudinal biorepository in Michigan Medicine.

14.
Artif Organs ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189702

RESUMO

BACKGROUND: Hemolysis in mechanical circulatory support systems is currently determined quantitatively. To also locally resolve hemolysis, we are developing a fluorescent hemolysis detection method. This requires a translucent two-phase blood analog fluid combined with particle image velocimetry, an optical flow field measurement. The blood analog fluid is composed of red blood cell surrogates. However, producing surrogates in sufficient volume is a challenge. We therefore present a high-volume and high-concentration production for our surrogates: ghost cells, hemoglobin-depleted erythrocytes. METHODS: In the ghost cell production, the hemoglobin is removed by a repeated controlled osmolar lysis. We have varied the solution mixture, centrifugation time, and centrifugation force in order to increase production efficiency. The production is characterized by measurements of output volume, hematocrit, transparency, and rheology of the blood analog fluid. RESULTS: The volume of produced ghost cells was significantly increased, and reproducibility was improved. An average production of 389 mL of ghost cells were achieved per day. Those ghost cells diluted in plasma have a rheology similar to blood while being permeable to light. CONCLUSION: The volume of ghost cells produced is sufficient for optical measurements as particle image velocimetry in mechanical circulatory support systems. This makes further work on experimental measurements for a locally resolved hemolysis detection possible.

15.
Anal Biochem ; 694: 115634, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094782

RESUMO

Lateral-flow immunoassays (LFAs) can be used to diagnose urinary tract infections caused by Escherichia coli (E. coli) at the point of care. Unfortunately, urine samples containing dilute concentrations of E. coli can yield false negative results on LFAs. Our laboratory was first to implement aqueous two-phase systems (ATPSs) to preconcentrate samples into smaller volumes prior to their application on LFAs. This is achieved by manipulating the ratio of the volume of the top phase to that of the bottom phase (volume ratio; VR) and concentrating biomarkers in the bottom phase which, when applied to LFAs in fixed volumes, leads to corresponding improvements in sensitivity. This work is the first demonstration that the same LOD can be achieved irrespective of the VR when the entire bottom phase is added to LFAs. A custom 3D-printed device was also developed to decrease liquid handling steps. Across different VRs expected from patient urine variability, this diagnostic workflow successfully detected E. coli concentrations down to 2 × 105 colony-forming units (cfu) mL-1 in synthetic urine, demonstrating consistent 10-fold improvements in sensitivity compared to trials conducted without ATPS preconcentration. This method successfully addresses the variability of patient samples while remaining easy to use at the point of care.


Assuntos
Escherichia coli , Escherichia coli/isolamento & purificação , Imunoensaio/métodos , Humanos , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Infecções Urinárias/urina , Limite de Detecção , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/urina , Infecções por Escherichia coli/microbiologia
16.
Bioresour Technol ; 409: 131267, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142417

RESUMO

Membrane aerated biofilm reactor (MABR) is challenged by biofilm thickness control and phosphorus removal. Air scouring aided by computational fluid dynamics (CFD) was employed to detach outer biofilm in sequencing batch MABR treating low C/N wastewater. Biofilm with 177-285 µm thickness in cycle 5-15 achieved over 85 % chemical oxygen demand (COD) and total inorganic nitrogen (TIN) removals at loading rate of 13.2 gCOD/m2/d and 2.64 gNH4+-N/m2/d. Biofilm rheology measurements in cycle 10-25 showed yield stress against detachment of 2.8-7.4 Pa, which were equal to CFD calculated shear stresses under air scouring flowrate of 3-9 L/min. Air scouring reduced effluent NH4+-N by 10 % and biofilm thickness by 78 µm. Intermittent aeration (4h off, 19.5h on) and air scouring (3 L/min, 30 s before settling) in one cycle achieved COD removal over 90 %, TIN and PO43--P removals over 80 %, showing great potential for simultaneous carbon, nitrogen and phosphorus removals.


Assuntos
Biofilmes , Reatores Biológicos , Carbono , Hidrodinâmica , Membranas Artificiais , Nitrogênio , Fósforo , Ar , Análise da Demanda Biológica de Oxigênio , Purificação da Água/métodos , Simulação por Computador , Reologia , Águas Residuárias/química
17.
Biostatistics ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142660

RESUMO

Immune response decays over time, and vaccine-induced protection often wanes. Understanding how vaccine efficacy changes over time is critical to guiding the development and application of vaccines in preventing infectious diseases. The objective of this article is to develop statistical methods that assess the effect of decaying immune responses on the risk of disease and on vaccine efficacy, within the context of Cox regression with sparse sampling of immune responses, in a baseline-naive population. We aim to further disentangle the various aspects of the time-varying vaccine effect, whether direct on disease or mediated through immune responses. Based on time-to-event data from a vaccine efficacy trial and sparse sampling of longitudinal immune responses, we propose a weighted estimated induced likelihood approach that models the longitudinal immune response trajectory and the time to event separately. This approach assesses the effects of the decaying immune response, the peak immune response, and/or the waning vaccine effect on the risk of disease. The proposed method is applicable not only to standard randomized trial designs but also to augmented vaccine trial designs that re-vaccinate uninfected placebo recipients at the end of the standard trial period. We conducted simulation studies to evaluate the performance of our method and applied the method to analyze immune correlates from a phase III SARS-CoV-2 vaccine trial.

18.
Ultrason Sonochem ; 109: 107007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111248

RESUMO

Cavitation generated during injector jetting can significantly affect fuel atomization. Laser-induced cavitation bubble is an important phenomenon in laser induced plasma ignition technology. Limited by the difficulties in experimental measurements, numerical simulations have become an important tool in the study of laser-induced cavitation bubble, but most previous numerical models used to study the dynamics of laser-induced cavitation bubble usually ignore the effect of chemical reactions. In this study, the finite volume method is used to solve the compressible two-dimensional reynolds averaged Navier-Stokes equation by considering the heat and mass transfer as well as the chemical reactions within the cavitation bubble. The effects of overall reaction and elementary reactions on the cavitation bubble are evaluated, respectively. It is found that by additionally considering chemical reactions within the numerical model, lower maximum temperatures and higher maximum pressures are predicted within the bubble. And the generated non-condensable gases produced by the chemical reactions enhance the subsequent expansion process of the cavitation bubble. Besides, the effect of the one-sided wall boundary condition on cavitation bubble is compared with the infinite boundary condition. Influenced by the wall boundary, the cavitation bubble forms a localized high pressure on the side of the bubble away from the wall during the collapse process, which causes the bubble to be compressed into a "crescent" shape. The maximum pressure and temperature inside the bubble are lower due to localized losses caused by the wall.

19.
Sci Rep ; 14(1): 16497, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020123

RESUMO

This article discusses a focused study on visualizing the flow patterns in a two-phase pulsating heat pipe (PHP) using Fe3O4/water as the working fluid at 3 V/V% concentration. The research also aims to meticulously examine phase change phenomena in the heating section, particularly focusing on bubble formation and expansion processes. A high-speed video camera was utilized to capture dynamic insights into the behavior of the Fe3O4/water mixture. Based on the findings, a straightforward model was developed to explain bubble generation and growth in the mixture, serving as a useful reference for future PHP designs and optimizations. Visual observations also noted the stable nature of the Fe3O4/water nanofluid over a 4-day period, confirming its consistency throughout the experiments. Moreover, the impact of heat load variation on the evaporator section was assessed using controlled heat inputs ranging from 10 to 80 W. Observations on the arrangement of slugs and plugs at a 50% filling ratio revealed interesting self-adjusting flow patterns in response to increasing heat inputs, providing valuable insights into PHP operational dynamics. Notably, the oscillatory flow behavior of Fe3O4/water, the chosen working fluid, exhibited greater activity in comparison to water. This distinctive flow behavior contributed to achieving heightened thermal performance efficiency for the Fe3O4/water system, attributed to its faster attainment of the annular flow condition.

20.
Sci Total Environ ; 948: 174782, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39009141

RESUMO

Air leakage in goaf often leads to coal spontaneous combustion (CSC), which not only directly affects the safety production of mines but also causes significant environmental damage. Therefore, effectively sealing the airflow in goaf is crucial for preventing CSC. Feasibility experiments on using two-phase foam to seal air leakage in goaf were conducted, leveraging the advantages of large flow rate, wide diffusion range, and good accumulation characteristics of two-phase foam. The research results indicate that continuous injection of foam into loose media with maintained ventilation can completely seal the air leakage, with the foam capable of withstanding wind pressures of nearly 600 Pa. When the foam is used for one-time sealing with a length of 2 m, it remains effective for 60 min, and the sealing effectiveness improves with longer distances sealed against air leakage. Numerical simulation analysis and field measurements of airflow leakage in mine working faces reveal that effectively sealing the airflow passage in the goaf behind the corner of the return airway is crucial for preventing CSC. Two methods are proposed for sealing external airflow during coal mining: foam injection using a point drilling method near the heading and an incremental buried pipe injection method. Finally, the feasibility of two-phase foam sealing technology for goaf airflow leakage is analyzed from multiple perspectives including sealing effectiveness, practicality, economy, foaming process, and engineering implementation. The research findings provide new insights into goaf sealing technology, aiding in addressing safety and environmental issues caused by spontaneous combustion in goaf areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...