Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243382

RESUMO

AIMS: Circulating dimethylguanidino valeric acid (DMGV) was identified as a novel metabolite related to cardiorespiratory fitness and cardiometabolic abnormalities. Circulating DMGV levels are subjective to dietary modulation; however, studies on its associations with intakes of coronary heart disease (CHD)-related foods/nutrients are limited. We investigated whether plasma DMGV was related to risk of incident CHD. We tested associations of DMGV with CHD-related dietary intakes measured by 7-day dietary records and estimated corresponding disease risk. METHODS AND RESULTS: This nested case-control study on the incidence of CHD included 1520 women (760 incident cases of fatal CHD and nonfatal myocardial infarction and 760 controls) from the Nurses' Health Study. Separately, plasma DMGV and CHD-related dietary intakes and cardiometabolic abnormalities were assessed in the Women's Lifestyle Validation Study (WLVS; n=724). Higher plasma DMGV was related to a greater risk of CHD (relative risk [RR] per 1-SD: 1.26 [95% CI: 1.13, 1.40]; P-for-linearity=0.006). Greater intakes of sodium, energy dense-foods, and processed/red meat were related to higher DMGV levels; every 1-SD intake of sodium was associated with ß 0.13 (SE 0.05; p=0.007) for DMGV-Z-scores, which corresponded to a RR of 1.031 [1.016, 1.046] for CHD. High DMGV (the top quartile, Q4) showed a significant RR of 1.60 [1.17, 2.18] after adjusting for diet and lifestyle factors; the RR further adjusting for obesity and hypertension was 1.29 [0.93, 1.79] as compared with the lowest quartile. In both cohorts, greater adiposity and adverse cardiometabolic factor status were significantly related to higher DMGV levels. CONCLUSION: Higher levels of plasma DMGV, a metabolite reflecting unfavorable CHD-related dietary intakes, were associated with an increased risk of CHD. The unfavorable association was attenuated by cardiometabolic risk factor status. Our study underscores the potential importance of plasma DMGV as an early biomarker associated with diet and the long-term risk of CHD among women.

2.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337595

RESUMO

Branched-chain hydroxy acids (BCHAs) as bioactive metabolites of Lactobacillaceae include 2-hydroxy isovaleric acid (HIVA), 2-hydroxy isocaproic acid (HICA), and 2-hydroxy-3-methyl isovaleric acid (HMVA). Combining targeted and untargeted metabolomics, this study elucidates differences in extracellular BCHA production in Limosilactobacillus fermentum, Ligilactobacillus salivarius, and Latilactobacillus sakei alongside comparing comprehensive metabolic changes. Through targeted metabolomics, BCHA production among 38 strains exhibited strain specificity, except for L. sakei, which showed significantly lower BCHA production. Explaining the lower production in L. sakei, which lacks the branched-chain amino acid (BCAA)-utilizing pathway, comparison of BCHA production by precursor reaction revealed that the pathway utilizing BCAAs is more dominant than the pathway utilizing pyruvate. Expanding upon the targeted approach, untargeted metabolomics revealed the effects of the reaction compound on other metabolic pathways besides BCHAs. Metabolism alterations induced by BCAA reactions varied among species. Significant differences were observed in glycine, serine, and threonine metabolism, pyruvate metabolism, butanoate metabolism, and galactose metabolism (p < 0.05). These results emphasize the importance of the synergy between fermentation strains and substrates in influencing nutritional components of fermented foods. By uncovering novel aspects of BCAA metabolism pathways, this study could inform the selection of fermentation strains and support the targeted production of BCHAs.


Assuntos
Hidroxiácidos , Latilactobacillus sakei , Ligilactobacillus salivarius , Limosilactobacillus fermentum , Limosilactobacillus fermentum/metabolismo , Hidroxiácidos/metabolismo , Latilactobacillus sakei/metabolismo , Ligilactobacillus salivarius/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Aminoácidos de Cadeia Ramificada/metabolismo , Fermentação
3.
Med Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982919

RESUMO

BACKGROUND: Among various carboxylic acid derivatives, valeric acid or pentanoic acid is found to be widely distributed in nature. It is a straight-chain alkyl carboxylic acid containing five carbon atoms. Due to the therapeutic value of valeric acid, it is used as a versatile nucleus in the pharmaceutical field. Valeric acid derivatives are associated with a broad spectrum of biological activities, like anticonvulsant, antiplatelet, antidiabetic, and plant growth activities. AIM: It has previously been revealed that peptide derivatives of carboxylic acids are accountable for enhanced antimicrobial activity. Therefore, it was hypothesized that coupling peptides with valeric acid would increase the antimicrobial properties of the target compounds. So, the objective of the present study was to synthesize peptide derivatives of 5-bromovaleric acid and evaluate their antibacterial and antifungal activities. METHODS: 5-bromovaleric acid was synthesized by the reaction of cyclopentanone and hydrogen peroxide in the presence of copper bromide and sodium bromide. Additionally, 5-bromovaleric acid was coupled with amino acid methyl esters, dipeptides, tripeptides, and tetrapeptides in the presence of dicyclohexylcarbodimide (DCC) and N-methylmorpholine (NMM) as a base under continuous stirring for 36 hours to produce its peptide derivatives. RESULTS: The results obtained showed that 5-bromovaleric acid possesses more potent antibacterial activity than N-terminal 5-bromovaleric acid conjugates of selected di-, tri, and tetra peptide Cterminal methyl esters against ciprofloxacin as a standard. The selected dipeptide and tripeptide Nterminal 5-bromovaleric acid-conjugated C-terminal methyl ester derivatives were more active than the selected tetrapeptide methyl ester analogue. Using fluconazole as a reference, the antifungal efficacy of 5-bromovaleric acid against C. albicans and A. niger declined as it was combined with C-terminal methyl esters of selected dipeptides, tripeptides, and tetrapeptides. CONCLUSION: The novel selected peptide derivatives had less antibacterial and antifungal action than the parent 5-bromovaleric acid. Antibacterial and antifungal investigations showed that 5- bromopentanoic acid peptide derivatives might impair antimicrobial efficacy. Further, attaching 5- bromopentanoic acid to di, tri, and tetra peptides did not boost their antibacterial potential.

4.
Biochem Pharmacol ; 226: 116343, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852645

RESUMO

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Assuntos
Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Rotenona , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Rotenona/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ratos , Masculino , Linhagem Celular Tumoral , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácidos Pentanoicos/farmacologia , Ácidos Pentanoicos/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Agregados Proteicos/efeitos dos fármacos
5.
Chemphyschem ; 25(18): e202300900, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38856848

RESUMO

Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electrochemical reduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electrochemical reduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA on a certain electrode. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.

6.
Biochar ; 6(1): 51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799720

RESUMO

Although addition of pyrolyzed organic materials (biochars) to soil generally results in increased growth and physiological performance of plants, neutral and negative responses have also commonly been detected. Toxicity of organic compounds generated during pyrolysis, sorbed by biochars, and then released into the soil solution, has been implicated as a possible mechanism for such negative effects. Conversely, water-soluble biochar constituents have also been suggested to have "hormetic" effects (positive effects on plants at low concentrations); however, no specific compounds responsible have been identified. We investigated the relative phytotoxicity-and possible hormetic effects-of 14 organic compounds common in aqueous extracts of freshly produced lignocellulosic biochars, using seed germination bioassays. Of the compounds examined, volatile fatty acids (VFAs: acetic, propionic, butyric, valeric, caproic, and 2-ethylbutyric acids) and phenol, showed acute phytotoxicity, with germination-based ED50 values of 1-30 mmol L-1, and 2-ethylbutyric acid showed ED50 values of 0.1-1.0 mmol L-1. Other compounds (benzene, benzoic acid, butanone, methyl salicylate, toluene, and 2,4-di-tert-butylphenol) showed toxic effects only at high concentrations close to solubility limits. Although phytotoxic at high concentrations, valeric and caproic acid also showed detectable hormetic effects on seedlings, increasing radicle extension by 5-15% at concentrations of ~ 0.01-0.1 mmol L-1. These data support the hypothesis that VFAs are the main agents responsible for phytotoxic effects of lignocellulosic biochar leachates, but that certain VFAs also have hormetic effects at low concentrations and may contribute to positive effects of biochar leachates on early plant development in some cases. Supplementary Information: The online version contains supplementary material available at 10.1007/s42773-024-00339-w.

7.
Theriogenology ; 225: 152-161, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805997

RESUMO

Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Desenvolvimento Embrionário , Mitocôndrias , Transportadores de Ácidos Monocarboxílicos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Suínos/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Simportadores
8.
J Drug Target ; 32(4): 423-432, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38315456

RESUMO

Parkinson's disease (PD) is a central nervous system disease with the highest disability and mortality rate worldwide, and it is caused by a variety of factors. The most common medications for PD have side effects with limited therapeutic outcomes. Many studies have reported that chitosan oligosaccharide (COS) crossed blood-brain barrier to achieve a neuroprotective effect in PD. However, the role of COS in PD remains unclear. The present study demonstrated that COS increased dopaminergic neurons in the substantia nigra (SN) and ameliorated dyskinesia in a PD mouse model. Moreover, COS reduced gut microbial diversity and faecal short-chain fatty acids. Valeric acid supplementation enhanced the inflammatory response in the colon and SN, and it reversed COS - suppressed dopamine neurons damage. Autophagy was involved in COS modulating inflammation through valeric acid. These results suggest that COS reduces bacterial metabolites - valeric acid, which diminishes inflammation via activating autophagy, ultimately alleviating PD.


Assuntos
Quitosana , Fármacos Neuroprotetores , Doença de Parkinson , Ácidos Pentanoicos , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Quitosana/farmacologia , Fármacos Neuroprotetores/farmacologia , Autofagia , Inflamação/tratamento farmacológico , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
Artigo em Inglês | MEDLINE | ID: mdl-38375842

RESUMO

BACKGROUNDS: Postbiotics produced by gut microbiota have exhibited diverse pharmacological activities. Valeric acid, a postbiotic material produced by gut microbiota and some plant species like valerian, has been explored to have diverse pharmacological activities. METHODS: This narrative review aims to summarise the beneficial role of valeric acid for different health conditions along with its underlying mechanism. In order to get ample scientific evidence, various databases like Science Direct, PubMed, Scopus, Google Scholar and Google were exhaustively explored to collect relevant information. Collected data were arranged and analyzed to reach a meaningful conclusion regarding the bioactivity profiling of valeric acid, its mechanism, and future prospects. RESULTS: Valeric acid belongs to short-chain fatty acids (SCFAs) compounds like acetate, propionate, butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid. Valeric acid has been identified as one of the potent histone deacetylase (HDAC) inhibitors. In different preclinical in -vitro and in-vivo studies, valeric acid has been found to have anti-cancer, anti-diabetic, antihypertensive, anti-inflammatory, and immunomodulatory activity and affects molecular pathways of different diseases like Alzheimer's, Parkinson's, and epilepsy. CONCLUSION: These findings highlight the role of valeric acid as a potential novel therapeutic agent for endocrine, metabolic and immunity-related health conditions, and it must be tested under clinical conditions to develop as a promising drug.


Assuntos
Produtos Biológicos , Doenças do Sistema Imunitário , Doenças Metabólicas , Ácidos Pentanoicos , Humanos , Animais , Ácidos Pentanoicos/farmacologia , Ácidos Pentanoicos/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia
10.
EBioMedicine ; 100: 104952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176203

RESUMO

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ácidos Pentanoicos , Probióticos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinogênese/patologia , Dieta Hiperlipídica , Colina/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...