Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.558
Filtrar
1.
Sci Rep ; 14(1): 26633, 2024 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496657

RESUMO

Pulmonary arterial hypertension (PAH) is a disease characterized by pulmonary vascular remodeling. Since dephosphorylated-uncarboxylated Matrix Gla-Protein (dp-ucMGP) is associated with cardiovascular mortality in systemic sclerosis, a disease associated with PAH, and immune-system involvement in PAH is increasingly recognized, we investigated the relationship between dp-ucMGP, vascular remodeling and soluble immune-checkpoint proteins in PAH. This prospective cohort study included patients with idiopathic (I)PAH, connective tissue disease (CTD)-PAH, chronic thrombo-embolic PH (CTEPH) and CTD patients without PAH. Patients with IPAH and CTD-PAH were stratified by clinical signs of immune-mediated inflammatory disease (IMID). We measured dp-ucMGP plasma levels, soluble immune-checkpoint proteins (sICPs), and vascular smooth muscle cell (iVSMC) calcification. We found elevated dp-ucMGP levels in all PAH subtypes and CTD patients compared to healthy controls. PAH patients showed increased iVSMC calcification, but no direct correlation was found with dp-ucMGP. IMID-PAH patients had higher dp-ucMGP levels than non-IMID PAH patients. dp-ucMGP correlated with several sICPs in both IPAH and CTD patients; multiple sICPs were elevated in IMID PAH patients. High dp-ucMGP levels in IPAH patients were associated with worse survival. Our findings suggest dp-ucMGP as a potential biomarker of immune-mediated vascular remodeling in PAH. Hence, dp-ucMGP, could help identify PAH patients who might benefit from immunosuppressive therapies.


Assuntos
Biomarcadores , Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Proteína de Matriz Gla , Remodelação Vascular , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio/sangue , Proteínas da Matriz Extracelular/sangue , Prognóstico , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/mortalidade , Estudos Prospectivos , Adulto , Fosforilação , Idoso , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
2.
Bioorg Chem ; 153: 107888, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39423772

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and fatal cardiovascular disorder that is characterized by pulmonary vascular remodeling. Our previous results demonstrated that heat shock protein (Hsp110) was significantly activated to induce vascular remodeling by enhancing the Hsp110-STAT3 interaction. The development of inhibitors that disrupt this association represents a novel strategy for the treatment of PAH. This study is committed to finding new inhibitors targeting the Hsp110-STAT3 interaction based on the structure of the lead compound 2h. A fusion design principle was employed in conjunction with structural optimization in the identification of the compound 10b. In vitro data indicates that 10b exhibited greater potency in the inhibition of pulmonary vascular cells malignant phenotypes via impeding the chaperone function of Hsp110 and the Hsp110-STAT3 interaction. In hypoxia-induced PAH rats, administration of 10b significantly attenuated vascular remodeling and right ventricular hypertrophy by inhibiting the Hsp110-STAT3 association. In short, this work identified a novel and promising lead compound for the development of anti-PAH drugs targeting the Hsp110-STAT3 interaction.

3.
Placenta ; 158: 38-47, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39361986

RESUMO

Preeclampsia (PE) is a pregnancy complication that is often diagnosed due to elevated blood pressure and proteinuria. Though current research focuses on the identification of novel biomarkers and therapeutic targets, still, there is a lack of clinical validation for the use of biomarkers and therapeutic targets for early diagnosis and treatment of PE. Several molecules are being studied for their potential role in PE. Among them, microRNAs are studied vastly for their role in the diagnosis, prognosis, and treatment of PE. But only a few studies are focused on the therapeutic efficacy of miRNAs in PE. Thus, the relevant articles were identified and discussed in this review. These studies provide evidence that miRNAs are indeed important molecules in PE that have the role of both therapeutic targets and therapeutic molecules. However, the studies are limited to in vivo an in vitro models, hence further studies are required to validate the complete potential of miRNA therapeutics. Long non-coding RNA (lncRNA) sponges, miRNA mimics, miRNA inhibitors, exosome-associated miRNAs, and several other molecules have been studied as miRNA-based therapeutics in PE. Thus, miRNAs are postulated to be potential therapeutic targets and miRNA-based therapeutics might pave the way for novel therapeutic approaches for PE.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39360410

RESUMO

BACKGROUND: Pulmonary hypertension is a devastating vascular disorder characterized by extensive pulmonary vascular remodeling, ultimately leading to right ventricular failure and death. Activation of PDGF (platelet-derived growth factor) signaling promotes the hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs), thus contributing to the pulmonary vascular remodeling. However, the molecular mechanisms that govern hyperproliferation of PASMCs induced by PDGF remain largely unknown, including the contribution of long noncoding RNAs (lncRNAs). In this study, we aimed to identify a novel lncRNA regulated by PDGF implicated in PASMC proliferation in pulmonary vascular remodeling. METHODS: RNA-sequencing analysis was conducted to identify a novel lncRNA named vessel-enriched lncRNA regulated by PDGF-BB (VELRP). Functional investigations of VELRP were performed using knockdown and overexpression strategies along with RNA sequencing. Validation of the function and potential mechanisms of VELRP were performed through Western blot, RNA immunoprecipitation, and chromatin immunoprecipitation assays. RESULTS: We identified a novel vessel-enriched lncRNA with an increased response to PDGF-BB stimulus. VELRP was identified as an evolutionarily conserved RNA molecules. Modulation of VELRP in PASMCs significantly altered cell proliferation. Mechanistically, VELRP enhances trimethylation of H3K4 by interacting with WDR5 (WD repeat-containing protein 5), leading to increased expression of CDK (cyclin-dependent kinase) 1, CDK2, and CDK4 and consequent hyperproliferation of PASMCs. The pathological relevance of VELRP upregulation in pulmonary artery was confirmed using rat pulmonary hypertension models in vivo, as well as in PASMCs from patients with idiopathic pulmonary arterial hypertension patients. Specific knockdown of VELRP in smooth muscle cells using adeno-associated virus type 9 SM22α (smooth muscle protein 22α) promoter-shRNA-mediated silencing of VELRP resulted in a significant decrease in right ventricular systolic pressure and vascular remodeling in rat pulmonary hypertension model. CONCLUSIONS: VELRP, as an lncRNA upregulated by PDGF-BB, mediates PASMC proliferation via WDR5/CDK signaling. In vivo studies demonstrate that targeted intervention of VELRP in smooth muscle cells can prevent the development of pulmonary hypertension.

5.
Animal Model Exp Med ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468692

RESUMO

BACKGROUND: Metabolic abnormalities are considered to play a key regulatory role in vascular remodeling of pulmonary arterial hypertension. However, to date, there is a paucity of research documenting the changes in metabolome profiles within the supernatants of pulmonary artery smooth muscle cells (PASMC) during their transition from a contractile to a synthetic phenotype. METHODS: CCK-8 and Edu staining assays were used to evaluate the cell viability and proliferation of human PASMCs. IncuCyte ZOOM imaging system was used to continuously and automatically detect the migration of the PASMCs. A targeted metabolomics profiling was performed to quantitatively analyze 121 metabolites in the supernatant. Orthogonal partial least squares discriminant analysis was used to discriminate between PDGF-BB-induced PASMCs and controls. Metabolite set enrichment analysis was adapted to exploit the most disturbed metabolic pathways. RESULTS: Human PASMCs exhibited a transformation from contractile phenotype to synthetic phenotype after PDGF-BB induction, along with a significant increase in cell viability, proliferation, and migration. Metabolites in the supernatants of PASMCs treated with or without PDGF-BB were well profiled. Eleven metabolites were found to be significantly upregulated, whereas seven metabolites were downregulated in the supernatants of PASMCs induced by PDGF-BB compared to the vehicle-treated cells. Fourteen pathways were involved, and pyruvate metabolism pathway was ranked first with the highest enrichment impact followed by glycolysis/gluconeogenesis and pyrimidine metabolism. CONCLUSIONS: Significant and extensive metabolic abnormalities occurred during the phenotypic transformation of PASMCs. Disturbance of pyruvate metabolism pathway might contribute to pulmonary vascular remodeling.

6.
Channels (Austin) ; 18(1): 2418128, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39425532

RESUMO

Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.


Assuntos
Fibrose , Canais Iônicos , Remodelação Vascular , Humanos , Animais , Canais Iônicos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
7.
Physiol Rep ; 12(20): e70089, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39435735

RESUMO

A role for metabolically active adipose tissue in pulmonary hypertension (PH) pathogenesis is emerging. Alterations in cellular metabolism in metabolic syndrome are triggers of PH-related vascular dysfunction. Metabolic reprogramming in proliferative pulmonary vascular cells causes a metabolic switch from oxidative phosphorylation to glycolysis. PDE3A and PDE3B subtypes in the regulation of metabolism in pulmonary artery smooth muscle cells (PASMC) are poorly understood. We previously found that PDE3A modulates the cellular energy sensor, AMPK, in human PASMC. We demonstrate that global Pde3a knockout mice have right ventricular (RV) hypertrophy, elevated RV systolic pressures, and metabolic dysfunction with elevated serum free fatty acids (FFA). Therefore, we sought to delineate Pde3a/Pde3b regulation of metabolic pathways in PASMC. We found that PASMC Pde3a deficiency, and to a lesser extent Pde3b deficiency, downregulates AMPK, CREB and PPARγ, and upregulates pyruvate kinase dehydrogenase expression, suggesting decreased oxidative phosphorylation. Interestingly, siRNA Pde3a knockdown in adipocytes led to elevated FFA secretion. Furthermore, PASMC exposed to siPDE3A-transfected adipocyte media led to decreased α-SMA, AMPK and CREB phosphorylation, and greater viable cell numbers compared to controls under the same conditions. These data demonstrate that deficiencies of Pde3a and Pde3b alter pathways that affect cell growth and metabolism in PASMC.


Assuntos
Proliferação de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Miócitos de Músculo Liso , Artéria Pulmonar , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/citologia
8.
J Mol Cell Cardiol ; 197: 61-77, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39437884

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.

9.
Circ Res ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39421926

RESUMO

BACKGROUND: Mitochondrial dysfunction, characterized by impaired lipid metabolism and heightened reactive oxygen species generation, results in lipid peroxidation and ferroptosis. Ferroptosis is an inflammatory mode of cell death that promotes complement activation and macrophage recruitment. In pulmonary arterial hypertension (PAH), pulmonary arterial endothelial cells exhibit cellular phenotypes that promote ferroptosis. Moreover, there is ectopic complement deposition and inflammatory macrophage accumulation in the pulmonary vasculature. However, the effects of ferroptosis inhibition on these pathogenic mechanisms and the cellular landscape of the pulmonary vasculature are incompletely defined. METHODS: Multiomics and physiological analyses evaluated how ferroptosis inhibition-modulated preclinical PAH. The impact of adeno-associated virus 1-mediated expression of the proferroptotic protein ACSL (acyl-CoA synthetase long-chain family member) 4 on PAH was determined, and a genetic association study in humans further probed the relationship between ferroptosis and pulmonary hypertension. RESULTS: Ferrostatin-1, a small-molecule ferroptosis inhibitor, mitigated PAH severity in monocrotaline rats. RNA-sequencing and proteomics analyses demonstrated that ferroptosis was associated with PAH severity. RNA-sequencing, proteomics, and confocal microscopy revealed that complement activation and proinflammatory cytokines/chemokines were suppressed by ferrostatin-1. In addition, ferrostatin-1 combatted changes in endothelial, smooth muscle, and interstitial macrophage abundance and gene activation patterns as revealed by deconvolution RNA-sequencing. Ferroptotic pulmonary arterial endothelial cell damage-associated molecular patterns restructured the transcriptomic signature and mitochondrial morphology, promoted the proliferation of pulmonary artery smooth muscle cells, and created a proinflammatory phenotype in monocytes in vitro. Adeno-associated virus 1-Acsl4 induced an inflammatory PAH phenotype in rats. Finally, single-nucleotide polymorphisms in 6 ferroptosis genes identified a potential link between ferroptosis and pulmonary hypertension severity in the Vanderbilt BioVU repository. CONCLUSIONS: Ferroptosis promotes PAH through metabolic and inflammatory mechanisms in the pulmonary vasculature.

10.
J Ethnopharmacol ; 337(Pt 3): 118896, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39393558

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qianyang Yuyin granules (QYYY) have been used clinically to treat hypertension for over two decades. Previous clinical trials have shown that QYYY can improve vascular elastic function in hypertensive patients. However, the underlying pharmacological mechanism is unclear. AIM OF THE STUDY: To elucidate the effects and mechanisms of QYYY on vascular remodeling using a multidisciplinary approach that includes network pharmacology, proteomics, and both in vitro and in vivo experiments. MATERIALS AND METHODS: The main components of QYYY were identified using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Network pharmacology and molecular docking were employed to predict QYYY's primary active ingredients, potential therapeutic targets and intervention pathways in hypertensive vascular remodeling. We induced hypertension in male C57BL/6 mice by infusing angiotensin II (Ang II) via osmotic minipumps, and performed pre-treatment with QYYY or Sacubitril/valsartan (Entresto). Blood pressure was monitored in vivo, followed by the extraction of aortas to examine pathological structural changes and alterations in protein expression patterns. The expression and location of proteins involved in the HIF-1α/TWIST1/P-p65 signaling pathway were investigated, as well as markers of vascular smooth muscle cells (VSMCs) phenotypic switch. In vitro, we studied the effects of QYYY water extract on Ang II-stimulated human aortic VSMCs. We investigated whether QYYY could affect the HIF-1α/TWIST1/P-p65 signaling pathway, thereby ameliorating apoptosis, autophagy, and phenotype switch in VSMCs. RESULTS: We identified 62 main compounds in QYYY, combined with network pharmacology, speculated 827 potentially active substances, and explored 1021 therapeutic targets. The KEGG pathway analysis revealed that the mechanisms of action associated with QYYY therapy potentially encompass various biological processes, including metabolic pathways, TNF signaling pathways, apoptosis, Ras signaling pathways, HIF-1 signaling pathways, autophagy-animal pathways. In hypertensive mice, QYYY restored abnormally elevated blood pressure, vascular remodeling, and inflammation with a dose-response relationship while altering abnormal protein patterns. In vitro, QYYY could inhibit abnormal proliferation, migration, intracellular Ca2+ accumulation and cytoskeletal changes of VSMCs. It improved mitochondrial function, reduced ROS levels, stabilized membrane potential, prevented cell death, and reduced overproduction of TGF-ß1, TNF-a, and IL-1ß. CONCLUSION: QYYY may be able to inhibit the overactivation of the HIF-1α/TWIST1/P-p65 signaling pathway, improve the phenotypic switch, and balance apoptosis and autophagy in VSMCs, thereby effectively improving vascular remodeling caused by hypertension.

11.
Physiol Rep ; 12(20): e70096, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39424429

RESUMO

Kawasaki disease (KD) causes vascular injury and lifelong remodeling. Excessive intimal proliferation has been observed, resulting in coronary artery lesions (CALs). However, the mechanisms underlying vascular remodeling in CAL and statin treatment have not been comprehensively elucidated. This study aimed to investigate the effects of statins on vascular remodeling using a KD mouse model. Candida albicans water-soluble substance (CAWS) was intraperitoneally injected in 5-week-old male apolipoprotein-E-deficient mice. They were categorized as follows (n = 4): control, CAWS, CAWS+statin, and late-statin groups. The mice were euthanized at 6 or 10 weeks after injection. Statins (atorvastatin) were initiated after CAWS injection, except for the late-statin group, for which statins were internally administered 6 weeks after injection. Elastica van Gieson staining and immunostaining were performed for evaluation. Statins substantially suppressed the marked neointimal hyperplasia induced by CAWS. Additionally, CAWS induced TGFß receptor II and MAC-2 expression around the coronary arteries, which was suppressed by the statins. KD-like vasculitis might promote the formation of aneurysm by destroying elastic laminae and inducing vascular stenosis by neointimal proliferation. The anti-inflammatory effects of statins might inhibit neointimal proliferation. Therefore, statin therapy might be effective in adult patients with KD with CAL by inhibiting vascular remodeling.


Assuntos
Atorvastatina , Vasos Coronários , Modelos Animais de Doenças , Inibidores de Hidroximetilglutaril-CoA Redutases , Síndrome de Linfonodos Mucocutâneos , Remodelação Vascular , Animais , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/patologia , Síndrome de Linfonodos Mucocutâneos/metabolismo , Masculino , Camundongos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/patologia , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Remodelação Vascular/efeitos dos fármacos , Neointima/patologia , Neointima/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Candida albicans/efeitos dos fármacos , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/patologia , Túnica Íntima/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-39387119

RESUMO

BACKGROUND: Macrophages play a significant role in the onset and progression of vascular disease in pulmonary hypertension, and cell-based immunotherapies aimed at treating vascular remodeling are lacking. To evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/proresolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced pulmonary hypertension. METHODS: Mouse bone marrow-derived macrophages were polarized in vitro to a regulatory (M2reg) phenotype. M2reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide/IFNγ (interferon-γ) restimulation, before their administration to 8- to 12-week-old mice. M2reg protective effect was evaluated at early (2-4 days) and late (4 weeks) time points during hypoxia (8.5% O2) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while pulmonary hypertension development was ascertained by right ventricular systolic pressure (RVSP) and right ventricular hypertrophy measurements. Bronchoalveolar lavage from M2reg-transplanted hypoxic mice was collected and its inflammatory potential evaluated on naive bone marrow-derived macrophages. RESULTS: M2reg macrophages expressing Tgfß, Il10, and Cd206 demonstrated a stable anti-inflammatory phenotype in vitro, by downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6, and Tnfα) upon a subsequent proinflammatory stimulus. A single dose of M2reg attenuated hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to pulmonary hypertension development was significantly reduced, and, importantly, M2reg attenuated right ventricular hypertrophy, right ventricular systolic pressure, and vascular remodeling at 4 weeks post-treatment. CONCLUSIONS: Adoptive transfer of M2reg halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights into the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.

13.
Toxicology ; : 153984, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481524

RESUMO

Lead (Pb) exposure remains a pressing concern in the realm of public health, with a mounting body of evidence underscoring its adverse impact on cardiovascular well-being. The exposure to Lead instigates the production of reactive oxygen species (ROS), leading to consequential cellular and physiological damage and a perturbation in redox equilibrium. The resultant oxidative stress, induced by ROS, disrupts endothelial functionality, propagates inflammatory processes, and initiates vascular remodeling, collectively contributing to the advancement of cardiovascular diseases (CVDs). The objective of this current review is to comprehensively expound upon the intricate mechanisms through which Lead induced toxicity affects cardiac cells. Additionally, it briefly addresses the ramifications of Lead exposure on the development of three interconnected cardiovascular conditions: atherosclerosis, hypertension, and myocardial infarction. Furthermore, the discourse delves into the specific repercussions of Lead exposure on lipid metabolism, blood pressure regulation, and cardiac performance, culminating in the initiation and progression of atherosclerotic plaque formation, elevated blood pressure, and an augmented risk of myocardial infarction. By understanding these intricate mechanisms, targeted interventions may be devised to counteract the deleterious effects of Lead on cardiovascular health. Thus, this review offers novel avenues for preventive and therapeutic strategies, ultimately serving to alleviate the burden of cardiovascular diseases associated with Lead toxicity.

14.
Life (Basel) ; 14(10)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39459565

RESUMO

Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.

15.
J Thromb Haemost ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357567

RESUMO

BACKGROUND: Despite appropriate treatment, up to 50% of patients with proximal deep vein thrombosis will develop postthrombotic syndrome (PTS). Once PTS occurs, there is no specific treatment, and some patients constantly experience intolerable symptoms. Hence, prevention of PTS is important. OBJECTIVES: To characterize vein wall remodeling after thrombus and investigate the effects of antiproliferative agent on postthrombotic vein wall remodeling in murine and human subjects. METHODS: Features of postthrombotic vein wall remodeling in murine and human subjects were characterized using imaging and histologic examinations. Paclitaxel-loaded hydrogels were used to assess the effects of antiproliferative agent on the remodeling in murine model. Based on the abovementioned results, a pilot study was conducted to assess the effects of paclitaxel-coated balloon dilation in patients with severe PTS experiencing intolerable symptoms. The control cohort was obtained by 1:1 propensity score matching from a prospective database. RESULTS: Structural and functional alterations in postthrombotic vein wall were verified by imaging and histologic examinations, and predominant active α-smooth muscle actin-positive cells and fibroblast-specific protein 1-positive cells proliferation was observed. In the murine model, the application of paclitaxel-loaded hydrogels inhibited the remodeling. In the pilot clinical study, patients receiving drug-coated balloon demonstrated benefits in Villalta scores and venous clinical severity scores compared with those not receiving drug-coated balloon, and no severe adverse events were reported except for thrombosis recurrence. CONCLUSION: Cell proliferation plays an important role in postthrombotic vein wall remodeling. Inhibition of cell proliferation inhibits the remodeling in murine model and may reduce signs and symptoms in patients with severe PTS.

16.
Open Med (Wars) ; 19(1): 20241044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381430

RESUMO

Abstract: Research indicates that hypoxic pulmonary hypertension (HPH) potentially stimulates the sympathetic nervous system, which may increase norepinephrine (NE) release and cause excessive Ca2+ influx into pulmonary artery smooth muscle cells (PASMCs), leading to calcium overload and abnormal PASMC proliferation, factors closely associated with pulmonary vascular remodeling (PVR). This study investigates the potential mechanisms underlying echinacoside (ECH) treatment in HPH. Method: In the in vitro experiment, NE-induced PASMCs were used to simulate HPH-induced PASMCs' calcium overload and abnormal proliferation. Postincubation with ECH, [Ca2+]cyt changes were detected using Fluo-4 AM. Flow cytometry was employed to ascertain ECH's inhibitory effect on PASMCs proliferation. For in vivo experiments, rats were exposed to a hypoxic and low-pressure oxygen environment to establish the HPH model. Post-ECH treatment, hematoxylin and eosin (HE) staining was conducted to assess PVR, and western blot analysis was used to examine protein expression in the lung tissues of the different groups. Results: ECH was observed to inhibit [Ca2+]cyt increase in NE-induced PASMCs in a concentration-dependent manner, effectively reducing abnormal cell proliferation. It also reduced the expression of Transient receptor potential channel (TRPC) 1 (TRPC1), TRPC4, TRPC6, and calmodulin in PASMCs. In vivo studies demonstrated that ECH lowered the expression of these proteins in lung tissues of HPH rats, significantly decreased mean pulmonary artery pressure, and mitigated PVR.

17.
Adv Sci (Weinh) ; : e2406398, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340832

RESUMO

Reconstruction of the neurovascular unit is essential for the repair of spinal cord injury (SCI). Nonetheless, detailed documentation of specific vascular changes following SCI and targeted interventions for vascular treatment remains limited. This study demonstrates that traumatic pathological vascular remodeling occurs during the chronic phase of injury, characterized by enlarged vessel diameter, disruption of blood-spinal cord barrier, endothelial-to-mesenchymal transition (EndoMT), and heightened extracellular matrix deposition. After SCI, osteopontin (OPN), a critical factor secreted by immune cells, is indispensable for early vascular regeneration but also contributes to traumatic pathological vascular remodeling. This work further elucidates the mechanism by which OPN influences spinal cord microvascular endothelial cells, involving Akt-mediated Foxo1 phosphorylation. This process facilitates the extranuclear transport of Foxo1 and decreases Smad7 expression, leading to excessive activation of the TGF-ß signaling pathway, which ultimately results in EndoMT and fibrosis. Targeted inhibition of Foxo1 phosphorylation through an endothelium-specific aptamer-liposome small molecule delivery system significantly mitigates vascular remodeling, thereby enhancing axon regeneration and neurological function recovery following SCI. The findings offer a novel perspective for drug therapies aimed at specifically targeting pathological vasculature after SCI.

18.
Atherosclerosis ; 398: 118591, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39277963

RESUMO

BACKGROUND AND AIMS: Endothelial dysfunction (ED) is considered to be a major driver of the increased incidence of cardiovascular disease in primary aldosteronism (PA). The functionality of the epoxyeicosatrienoic acid (EET) pathway, involving the release of beneficial endothelium-derived lipid mediators, in PA is unknown. Evidence suggests this pathway to be disturbed in various models of experimental hypertension. We therefore assessed EET production in primary human coronary artery endothelial cells exposed to aldosterone excess and measured circulating EET in patients with PA. METHODS: We used qPCR to investigate changes in the expression levels of essential genes for the synthesis and degradation of EET, calcium imaging to address the functional impact on overall endothelial function, as well as mass spectrometry to determine endothelial synthetic capacity to release EET upon stimulation. RNA-seq was performed to gain further mechanistic insights. Eicosanoid concentrations in patient's plasma were also determined by mass spectrometry. RESULTS: Aldosterone, while eliciting proinflammatory VCAM1 expression and disturbed calcium response to acetylcholine, did not negatively affect stimulated release of endothelial EET. Likewise, no differences were observed in eicosanoid concentrations in plasma from patients with PA when compared to essential hypertensive controls. However, an inhibitor of soluble epoxide hydrolase abrogated aldosterone-mediated VCAM1 induction and led to a normalized endothelial calcium response probably by restoring expression of CHRNE. CONCLUSION: EET release appears intact despite aldosterone excess. Epoxide hydrolase inhibition may revert aldosterone-induced functional changes in endothelial cells. These findings indicate a potential new therapeutic principle to address ED, which should be explored in future preclinical and clinical trials.

19.
Biomedicines ; 12(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39335465

RESUMO

Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H2S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H2S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H2S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H2S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H2S reduces MMP activation, contributing to plaque stability and vascular remodeling. H2S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H2S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H2S-based therapies for clinical application in atherosclerosis.

20.
Diagnostics (Basel) ; 14(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335699

RESUMO

(200/200) Purpose: Our aim was to evaluate structural alterations of retinal arterioles due to type 1 diabetes (T1D) and/or diabetic retinopathy (DR) under AOSLO imaging. METHODS: Each study eye underwent mydriasis and AOSLO imaging in a single-visit study. The instrument's arrangement of four offset aperture images provided two orthogonal split-detector images and enabled isotropic analysis of the arteriolar boundaries. For each arteriole, we calculated the wall-to-lumen ratio (WLR), mean wall thickness, and luminal and external diameters. RESULTS: In total, we enrolled 5 (20.8%) healthy control eyes and 19 eyes of patients with T1D. The DR distribution was: four (16.7%) no-DR, nine (37.5%%) mild or moderate nonproliferative DR (NPDR), and six (25%) severe NPDR or proliferative DR. Mean wall thickness increased significantly in eyes with T1D compared to healthy controls (p = 0.0006) and in eyes with more advanced DR (p = 0.0004). The WLR was significantly higher in eyes with T1D (p = 0.002) or more severe DR (p = 0.004). There was no significant relationship between T1D status or DR severity and any of the arteriolar diameters. CONCLUSIONS: In this preliminary study, there appeared to be increases in the WLR and mean wall thickness in eyes with T1D and more severe DR than in the controls and eyes with no/less severe DR. Future studies may further elucidate the relationship between the retinal arteriolar structure and physiologic alterations in DR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...