Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
NMR Biomed ; : e5225, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107878

RESUMO

Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.

2.
Entropy (Basel) ; 26(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39202090

RESUMO

Equilibrium density fluctuations at the molecular level produce cavities in a liquid and can be analyzed to shed light on the statistics of the number of molecules occupying observation volumes of increasing radius. An information theory approach led to the conclusion that these probabilities should follow a Gaussian distribution. Computer simulations confirmed this prediction across various liquid models if the size of the observation volume is not large. The reversible work required to create a cavity and the chance of finding no molecules in a fixed observation volume are directly correlated. The Gaussian formula for the latter probability is scrutinized to derive the changes in enthalpy and entropy, which arise from the cavity creation. The reversible work of cavity creation has a purely entropic origin as a consequence of the solvent-excluded volume effect produced by the inaccessibility of a region of the configurational space. The consequent structural reorganization leads to a perfect compensation of enthalpy and entropy changes. Such results are coherent with those obtained from Lee in his direct statistical mechanical study.

3.
J Appl Clin Med Phys ; 25(6): e14388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762906

RESUMO

BACKGROUND: The ZAP-X system is a novel gyroscopic radiosurgical system based on a 3 MV linear accelerator and collimator cones with a diameter between 4 and 25 mm. Advances in imaging modalities to detect small and early-stage pathologies allow for an early and less invasive treatment, where a smaller collimator matching the anatomical target could provide better sparing of surrounding healthy tissue. PURPOSE: A novel 3 mm collimator cone for the ZAP-X was developed. This study aims to investigate the usability of a commercial diode detector (microSilicon) for the dosimetric characterization of this small collimator cone; and to investigate the underlying small field perturbation effects. METHODS: Profile measurements in five depths as well as PDD and output ratio measurements were performed with a microSilicon detector and radiochromic EBT3 films. In addition, comprehensive Monte Carlo simulations were performed to validate the measurement observations and to quantify the perturbation effects of the microSilicon detector in these extremely small field conditions. RESULTS: It is shown that the microSilicon detector enables an accurate dosimetric characterization of the 3 mm beam. The profile parameters, such as the FWHM and 20%-80% penumbra width, agree within 0.1 to 0.2 mm between film and detector measurements. The output ratios agree within the measurement uncertainty between microSilicon detector and films, whereas the comparisons of the PDD results show good agreement with the Monte Carlo simulations. The analysis of the perturbation factors of the microSilicon detector reveals a small field correction factor of approximately 3% for the 3 mm circular beam and a correction factor smaller than 1.5% for field diameters above 3 mm. CONCLUSIONS: It could be shown that the microSilicon detector is well-suitable for the characterization of the new 3 mm circular beam of the ZAP-X system.


Assuntos
Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radiocirurgia/métodos , Radiocirurgia/instrumentação , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Radiometria/instrumentação , Simulação por Computador , Radioterapia de Intensidade Modulada/métodos , Silício/química
4.
Adv Sci (Weinh) ; 11(22): e2309824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561966

RESUMO

Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.


Assuntos
Agricultura , Técnicas Biossensoriais , Ureia , Agricultura/métodos , Agricultura/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Nanotecnologia/métodos , Nanotecnologia/instrumentação , Fertilizantes/análise , Desenho de Equipamento , Fontes de Energia Elétrica , Internet das Coisas
5.
Aesthetic Plast Surg ; 48(11): 2210-2219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499876

RESUMO

BACKGROUND: The extracellular matrix isolated from adipose tissue, known as acellular adipose matrix (AAM), represents a novel biomaterial. AAM functions as a scaffold that not only supports stem cell proliferation and differentiation but also induces adipogenesis and angiogenesis. This study aims to investigate the volumetric effects and microenvironmental changes associated with injectable AAM in comparison to conventional fat grafting. METHODS: AAM was manufactured from fresh human abdominoplasty fat using a mechanically modified method and then transformed into an injectable form. Lipoaspirate was harvested employing the Coleman technique. A weight and volume study was conducted on athymic nude mice by injecting either injectable AAM or lipoaspirate into the scalp (n=6 per group). After eight weeks, graft retention was assessed through weight measurement and volumetric analysis using micro-computed tomography (micro-CT) scanning. Histological analysis was performed using immunofluorescence staining for perilipin and CD31. RESULTS: Injectable AAM exhibited similar weight and volume effects in murine models. Histological analysis revealed comparable inflammatory cell presence with minimal capsule formation when compared to conventional fat grafts. Adipogenesis occurred in both AAM-injected and conventional fat graft models, with no significant difference in the blood vessel area (%) between the two. CONCLUSIONS: In summary, injectable AAM demonstrates effectiveness comparable to conventional fat grafting concerning volume effects and tissue regeneration in soft tissue reconstruction. This promising allogeneic injectable holds the potential to serve as a safe and effective "Off-the-Shelf" alternative in both aesthetic and reconstructive clinical practices. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Abdominoplastia , Tecido Adiposo , Camundongos Nus , Animais , Camundongos , Tecido Adiposo/transplante , Abdominoplastia/métodos , Humanos , Feminino , Procedimentos de Cirurgia Plástica/métodos , Modelos Animais de Doenças , Microtomografia por Raio-X , Adipogenia , Distribuição Aleatória , Sobrevivência de Enxerto , Modelos Animais , Matriz Extracelular/transplante
6.
EJNMMI Phys ; 11(1): 15, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316677

RESUMO

BACKGROUND: In peptide receptor radionuclide therapy (PRRT), accurate quantification of kidney activity on post-treatment SPECT images paves the way for patient-specific treatment. Due to the limited spatial resolution of SPECT images, the partial volume effect (PVE) is a significant source of quantitative bias. In this study, we aimed to evaluate the performance and robustness of anatomy-based partial volume correction (PVC) algorithms to recover the accurate activity concentration of realistic kidney geometries on [Formula: see text]Lu SPECT images recorded under clinical conditions. METHODS: Based on the CT scan data from patients, three sets of fillable kidneys with surface-to-volume (S:V) ratios ranging from 1.5 to 2.8 cm-1, were 3D printed and attached in a IEC phantom. Quantitative [Formula: see text]Lu SPECT/CT acquisitions were performed on a GE Discovery NM CT 870 DR camera for the three modified IEC phantoms and for 6 different Target-To-Background ratios (TBRs: 2, 4, 6, 8, 10, 12). Two region-based (GTM and Labbé) and five voxel-based (GTM + MTC, Labbé + MTC, GTM + RBV, Labbé + RBV and IY) methods were evaluated with this data set. Additionally, the robustness of PVC methods to Point Spread Function (PSF) discrepancies, registration mismatches and background heterogeneity was evaluated. RESULTS: Without PVC, the average kidney RCs across all TBRs ranged from 0.66 ± 0.05 (smallest kidney) to 0.80 ± 0.03 (largest kidney). For a TBR of 12, all anatomy-based method were able to recover the kidneys activity concentration with an error < 6%. All methods result in a comparable decline in RC restoration with decreasing TBR. The Labbé method was the most robust against PSF and registration mismatches but was also the most sensitive to background heterogeneity. Among the voxel-based methods, MTC images were less uniform than RBV and IY images at the outer edge of high uptake areas (kidneys and spheres). CONCLUSION: Anatomy-based PVE correction allows for accurate SPECT quantification of the [Formula: see text]Lu activity concentration with realistic kidney geometries. Combined with recent progress in deep-learning algorithms for automatic anatomic segmentation of whole-body CT, these methods could be of particular interest for a fully automated OAR dosimetry pipeline with PVE correction.

7.
Tissue Eng Part A ; 30(15-16): 473-484, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38318797

RESUMO

Successful in vitro culture of small-diameter tissue-engineered vascular grafts (TEVGs) requires rapid deposition of biomacromolecules secreted by vascular smooth muscle cells in a polyglycolic acid mesh scaffold's three-dimensional (3D) porous environment. However, common media have lower crowding conditions than in vivo tissue fluids. In addition, during the early stages of construction, most of the biomolecules secreted by the cells into the medium are lost, which negatively affects the TEVG culture process. In this study, we propose the use of macromolecular crowding (MMC) to enhance medium crowding to improve the deposition and self-assembly efficiency of major biomolecules in the early stages of TEVG culture. The addition of carrageenan significantly increased the degree of MMC in the culture medium without affecting cell viability, proliferation, and metabolic activity. Protein analysis demonstrated that the deposition of collagen types I and III and fibronectin increased significantly in the cell layers of two-dimensional and 3D smooth muscle cell cultures after the addition of a MMC agent. Collagen type I in the culture medium decreased significantly compared with that in the medium without a MMC agent. Scanning electron microscopy demonstrated that MMC agents considerably enhanced the formation of matrix protein structures during the early stages of 3D culture. Hence, MMC modifies the crowding degree of the culture medium, resulting in the rapid formation of numerous matrix proteins and fiber structures. Impact Statement Small-diameter tissue-engineered vascular grafts (TEVGs) are one of the most promising means of treating cardiovascular diseases; however, the in vitro construction of TEVGs has some limitations, such as slow deposition of extracellular matrix (ECM), long culture period, and poor mechanical properties. We hypothesized that macromolecular crowding can increase the crowding of the culture medium to construct a more bionic microenvironment, which enhances ECM deposition in the medium to the cell layer and reduces collagen loss, accelerating and enhancing TEVG culture and construction in vitro.


Assuntos
Prótese Vascular , Miócitos de Músculo Liso , Engenharia Tecidual , Engenharia Tecidual/métodos , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas da Matriz Extracelular/metabolismo , Substâncias Macromoleculares/metabolismo , Alicerces Teciduais/química , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos
8.
Phys Med ; 119: 103315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377837

RESUMO

PURPOSE: This work set out to propose an attention-based deep neural network to predict partial volume corrected images from PET data not utilizing anatomical information. METHODS: An attention-based convolutional neural network (ATB-Net) is developed to predict PVE-corrected images in brain PET imaging by concentrating on anatomical areas of the brain. The performance of the deep neural network for performing PVC without using anatomical images was evaluated for two PVC methods, including iterative Yang (IY) and reblurred Van-Cittert (RVC) approaches. The RVC and IY PVC approaches were applied to PET images to generate the reference images. The training of the U-Net network for the partial volume correction was trained twice, once without using the attention module and once with the attention module concentrating on the anatomical brain regions. RESULTS: Regarding the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root mean square error (RMSE) metrics, the proposed ATB-Net outperformed the standard U-Net model (without attention compartment). For the RVC technique, the ATB-Net performed just marginally better than the U-Net; however, for the IY method, which is a region-wise method, the attention-based approach resulted in a substantial improvement. The mean absolute relative SUV difference and mean absolute relative bias improved by 38.02 % and 91.60 % for the RVC method and 77.47 % and 79.68 % for the IY method when using the ATB-Net model, respectively. CONCLUSIONS: Our results propose that without using anatomical data, the attention-based DL model could perform PVC on PET images, which could be employed for PVC in PET imaging.


Assuntos
Encéfalo , Fluordesoxiglucose F18 , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos
9.
J Appl Clin Med Phys ; 25(3): e14287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346094

RESUMO

PURPOSE: This work proposed a convolutional neural network (CNN)-based method trained with images acquired with electron density phantoms to reduce quantum noise for coronary artery calcium (CAC) scans reconstructed with slice thickness less than 3 mm. METHODS: A DenseNet model was used to estimate quantum noise for CAC scans reconstructed with slice thickness of 0.5, 1.0 and 1.5 mm. Training data was acquired using electron density phantoms in three different sizes. The label images of the CNN model were real noise maps, while the input images of the CNN model were pseudo noise maps. Image denoising was conducted by subtracting the CNN output images from thin-sliced CAC scans. The efficacy of the proposed method was verified through both phantom study and patient study. RESULTS: By means of phantom study, the proposed method was proven effective in reducing quantum noise in CAC scans reconstructed with 1.5-mm slice thickness without causing significant texture change or variation in HU values. With regard to patient study, calcifications were more clear on the denoised CAC scans reconstructed with slice thickness of 0.5, 1.0 and 1.5 mm than on 3-mm slice images, while over-smooth changes were not observed in the denoised CAC scans reconstructed with 1.5-mm slice thickness. CONCLUSION: Our results demonstrated that the electron density phantoms can be used to generate training data for the proposed CNN-based denoising method to reduce quantum noise for CAC scans reconstructed with 1.5-mm slice thickness. Because anthropomorphic phantom is not a necessity, our method could make image denoising more practical in routine clinical practice.


Assuntos
Cálcio , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Vasos Coronários/diagnóstico por imagem , Elétrons , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imagens de Fantasmas
10.
Front Neurosci ; 17: 1293847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099203

RESUMO

Positron Emission Tomography (PET) brain imaging is increasingly utilized in clinical and research settings due to its unique ability to study biological processes and subtle changes in living subjects. However, PET imaging is not without its limitations. Currently, bias introduced by partial volume effect (PVE) and poor signal-to-noise ratios of some radiotracers can hamper accurate quantification. Technological advancements like ultra-high-resolution scanners and improvements in radiochemistry are on the horizon to address these challenges. This will enable the study of smaller brain regions and may require more sophisticated methods (e.g., data-driven approaches like unsupervised clustering) for reference region selection and to improve quantification accuracy. This review delves into some of these critical aspects of PET molecular imaging and offers suggested strategies for improvement. This will be illustrated by showing examples for dopaminergic and cholinergic nerve terminal ligands.

11.
Am J Transl Res ; 15(10): 6299-6303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969182

RESUMO

Facet joint synovial cysts can cause significant back pain and radiculopathy. Treatment options for symptomatic facet joint synovial cysts include surgical excision, facet joint steroid injections, and cyst aspiration. Herein, we report our experience of successfully rupturing a lumbar facet joint synovial cyst through a percutaneous approach with two needles using forceful pressure under C-arm fluoroscopic guidance. The patient experienced immediate symptom improvement that persisted throughout the 24-month follow-up. Our experience highlights that the volume effect technique is a valuable treatment option for symptomatic facet joint synovial cysts under fluoroscopic guidance.

12.
Phys Med ; 116: 103174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007296

RESUMO

BACKGROUND: In NM-imaging, theoretical curves for the recovery coefficient (RC) of the signal maximum and mean are known for spheres and cubes, if a 3D Gaussian PSF is assumed. The RC of the maximum is also known for cylinders. For these and other shapes empirical equations with one or two fit-parameters have been utilized. METHODS: An equation for the RC for large objects of arbitrary shape is derived and generalized into an empirical equation for smaller objects, which is verified by numerical simulations. The proposed equation is compared to published results on SPECT kidney phantom measurements and to PET measurements on the NEMA IEC PET body phantom with six spheres. RESULTS: The signal loss (1-RC) for large spheres is inversely proportional to the radius, where the slope is proportional to the FWHM of the spatial resolution. For non-spherical shapes the generalized instead of the volume equivalent radius should be utilized. For smaller objects, an equation with one added empirical fit-parameter is presented. It is demonstrated that the EANM-guidelines' two-parameter logistic function results in a poor fit if the theoretical slope and inverse proportionality are forced and it gives a suboptimal fit when both parameters are fitted. CONCLUSIONS: A novel model-based equation for the mean RC-curve is derived. It can be used for arbitrary shapes as long as the sphericity is taken into account and it is accurate down to RC = 10 %. One parameter is directly related to the spatial resolution, while the other is a shape depending fit-parameter.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
13.
J Appl Clin Med Phys ; 24(12): e14191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922380

RESUMO

PURPOSE: Modern radiotherapy techniques often deliver small radiation fields. In this work, a practical Electron Paramagnetic Resonance (EPR) dosimetry protocol is adapted and applied to measure output factors (OF) in small fields of a 6 MV radiotherapy system. Correction factors and uncertainties are presented and OFs are compared to the values obtained by following TRS-483 using an ionization chamber (IC). METHODS: Irradiations were performed at 10 cm depth inside a water phantom positioned at 90 cm source to surface distance with a 6 MV flattening filter free photon beam of a Halcyon radiotherapy system. OFs for different nominal field sizes (1 × 1, 2 × 2, 3 × 3, 4 × 4, normalized to 10 × 10 cm2 ) were determined with a PinPoint 3D (PTW 31022) IC following TRS-483 as well as with alanine pellets with a diameter of 4 mm and a height of 2.4 mm. EPR readout was performed with a benchtop X-band spectrometer. Correction factors due to volume averaging and due to positional uncertainties were derived from 2D film measurements. RESULTS: OFs obtained from both dosimeter types agreed within 0.7% after applying corrections for the volume averaging effect. For the used alanine pellets, volume averaging correction factors of 1.030(2) for the 1 × 1 cm2 field and <1.002 for the larger field sizes were determined. The correction factor for positional uncertainties of 1 mm was in the order of 1.018 for the 1 × 1 cm2 field. Combined relative standard uncertainties uc for the OFs resulting from alanine measurements were estimated to be below 1.5% for all field sizes. For IC measurements, uc was estimated to be below 1.0%. CONCLUSIONS: A practical EPR dosimetry protocol is adaptable for precisely measuring OFs in small fields down to 1 × 1 cm2 . It is recommended to consider the effect of positional uncertainties for field sizes <2 × 2 cm2 .


Assuntos
Alanina , Radiometria , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radiometria/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Fótons
14.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(9): 389-426, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37821390

RESUMO

Biomedical advances of external-beam radiotherapy (EBRT) with improvements in physical accuracy are reviewed. High-precision (±1 mm) three-dimensional radiotherapy (3DRT) can utilize respective therapeutic open doors in the tumor control probability curve and in the normal tissue complication probability curve instead of the one single therapeutic window in two-dimensional EBRT. High-precision 3DRT achieved higher tumor control and probable survival rates for patients with small peripheral lung and liver cancers. Four-dimensional radiotherapy (4DRT), which can reduce uncertainties in 3DRT due to organ motion by real-time (every 0.1-1 s) tumor-tracking and immediate (0.1-1 s) irradiation, have achieved reduced adverse effects for prostate and pancreatic tumors near the digestive tract and with similar or better tumor control. Particle beam therapy improved tumor control and probable survival for patients with large liver tumors. The clinical outcomes of locally advanced or multiple tumors located near serial-type organs can theoretically be improved further by integrating the 4DRT concept with particle beams.


Assuntos
Neoplasias , Radioterapia , Humanos , Neoplasias/radioterapia , Radioterapia/métodos
15.
Acta Biomater ; 170: 111-123, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634833

RESUMO

Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition in eukaryotic cell culture. Single hyaluronic acid (HA) molecules have not induced a notable increase in the amount and rate of deposited ECM. Thus, herein we assessed the physicochemical properties and biological consequences in equine bone marrow mesenchymal stromal cell cultures of single and mixed HA molecules and correlated them to the most widely used MMC agents, the FicollⓇ cocktail (FC) and carrageenan (CR). Dynamic light scattering analysis revealed that all HA cocktails had significantly higher hydrodynamic radius than the FC and CR; the FC and the 0.5 mg/ml 100 kDa and 500 kDa single HA molecules had the highest charge; and, in general, all molecules had high polydispersity index. Biological analyses revealed that none of the MMC agents affected cell morphology and basic cell functions; in general, CR outperformed all other macromolecules in collagen type I and V deposition; FC, the individual HA molecules and the HA cocktails outperformed CR in collagen type III deposition; FC outperformed CR and the individual HA molecules and the HA cocktails outperformed their constituent HA molecules in collagen type IV deposition; FC and certain HA cocktails outperformed CR and constituent HA molecules in collagen type VI deposition; and all individual HA molecules outperformed FC and CR and the HA cocktails outperformed their constituent HA molecules in laminin deposition. With respect to tri-lineage analysis, CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. This work opens new avenues in mixed MMC in eukaryotic cell culture. STATEMENT OF SIGNIFICANCE: Mixed macromolecular crowding (MMC) in eukaryotic cell culture is still under-investigated. Herein, single and double hyaluronic acid (HA) macromolecules, along with the traditional MMC agents FicollⓇ cocktail (FC) and carrageenan (CR), were used as MMC agents in equine mesenchymal stromal cell cultures. Biological analysis showed that none of the MMC agents affected cell morphology and basic cell functions. Protein deposition analysis made apparent that CR outperformed all other macromolecules in collagen type I and collagen type V deposition, whilst FC, the individual HA macromolecules and the HA cocktails outperformed CR in collagen type III deposition. Tri-lineage analysis revealed that CR and HA enhanced chondrogenesis and osteogenesis, whilst FC enhanced adipogenesis. These data illustrate that MMC agents are not inert macromolecules.

16.
Adv Mater ; 35(40): e2302954, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354126

RESUMO

Improving the output energy and durability of triboelectric nanogenerators (TENGs) remains a considerable challenge for their practical applications. Owing to the interface effect of triboelectrification and electrostatic induction, thinner films with higher dielectric constants yield a higher output; however, they are not durable for practical applications. Herein, the dielectric surface effect is changed into a volume effect by adopting a millimeter-thick dielectric film with an inner porous network structure so that charges can hop in the surface state of the network. Charge migration inside the dielectric film is the key factor affecting the output of the triboelectric nanogenerator (TENG) with a thick film, based on which each working stage follows the energy-maximization principle in the voltage-charge plot. The maximum peak and average power densities of the TENG with polyurethane foam film in 1 mm thickness reach 40.9 and 20.7 W m-2  Hz-1 , respectively, under environmental conditions, and the output charge density is 5.14 times that of TENGs with a poly(tetrafluoroethylene) film of the same thickness. Superdurability is achieved in the rotary-mode TENG after 200 000 operation cycles. This study identifies the physical mechanism of the thick dielectric film used in TENGs and provides a new approach to promote the output and durability of TENGs.

17.
EJNMMI Phys ; 10(1): 33, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243869

RESUMO

BACKGROUND: Total-body PET scanners with axial field of views (FOVs) longer than 1 m enable new applications to study multiple organs (e.g., the brain-gut-axis) simultaneously. As the spatial resolution and the associated partial volume effect (PVE) can vary significantly along the FOV, detailed knowledge of the contrast recovery coefficients (CRCs) is a prerequisite for image analysis and interpretation of quantitative results. The aim of this study was to determine the CRCs, as well as voxel noise, for multiple isotopes throughout the 1.06 m axial FOV of the Biograph Vision Quadra PET/CT system (Siemens Healthineers). MATERIALS AND METHODS: Cylindrical phantoms equipped with three different sphere sizes (inner diameters 7.86 mm, 28 and 37 mm) were utilized for the PVE evaluation. The 7.86 mm sphere was filled with F-18 (8:1 and 4:1), Ga-68 (8:1) and Zr-89 (8:1). The 28 mm and 37 mm spheres were filled with F-18 (8:1). Background concentration in the respective phantoms was of ~ 3 kBq/ml. The phantoms were measured at multiple positions in the FOV (axial: 0, 10, 20, 30, 40 and 50 cm, transaxial: 0, 10, 20 cm). The data were reconstructed with the standard clinical protocol, including PSF correction and TOF information with up to 10 iterations for maximum ring differences (MRDs) of 85 and 322; CRCs, as well as voxel noise levels, were determined for each position. RESULTS: F-18 CRCs (SBR 8:1 and 4:1) of the 7.86 mm sphere decreased up to 18% from the center FOV (cFOV) toward the transaxial edge and increased up to 17% toward the axial edge. Noise levels were below 15% for the default clinical reconstruction parameters. The larger spheres exhibited a similar pattern. Zr-89 revealed ~ 10% lower CRCs than F-18 but larger noise (9.1% (F-18), 19.1% (Zr-89); iteration 4, cFOV) for the default reconstruction. Zr-89 noise levels in the cFOV significantly decreased (~ 28%) when reconstructing the data with MRD322 compared with MRD85 along with a slight decrease in CRC values. Ga-68 exhibited the lowest CRCs for the three isotopes and noise characteristics comparable to those of F-18. CONCLUSIONS: Distinct differences in the PVE within the FOV were detected for clinically relevant isotopes F-18, Ga-68 and Zr-89, as well as for different sphere sizes. Depending on the positions inside the FOV, the sphere-to-background ratios, count statistics and isotope used, this can result in an up to 50% difference between CRCs. Hence, these changes in PVE can significantly affect the quantitative analysis of patient data. MRD322 resulted in slightly lower CRC values, especially in the center FOV, whereas the voxel noise significantly decreased compared with MRD85.

18.
Med Phys ; 50(7): 4546-4561, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36908165

RESUMO

BACKGROUND AND PURPOSE: As a part of the commissioning and quality assurance in proton beam therapy, lateral dose profiles and output factors have to be acquired. Such measurements can be performed with point detectors and are especially challenging in small fields or steep lateral penumbra regions as the detector's volume effect may lead to perturbations. To address this issue, this work aims to quantify and correct for such perturbations of six point detectors in small proton fields created via three different delivery techniques. METHODS: Lateral dose profile and output measurements of three proton beam delivery techniques (pencil beam scanning, pencil beam scanning combined with collimators, passive scattering with collimators) were performed using high-resolution EBT3 films, a PinPoint 3D 31022 ionization chamber, a microSilicon diode 60023 and a microDiamond detector 60019 (all PTW Freiburg, Germany). Detector specific lateral dose response functions K(x,y) acting as the convolution kernel transforming the undisturbed dose distribution D(x,y) into the measured signal profiles M(x,y) were applied to quantify perturbations of the six investigated detectors in the proton fields and correct the measurements. A signal theoretical analysis in Fourier space of the dose distributions and detector's K(x,y) was performed to aid the understanding of the measurement process with regard to the combination of detector choice and delivery technique. RESULTS: Quantification of the lateral penumbra broadening and signal reduction at the fields center revealed that measurements in the pencil beam scanning fields are only compromised slightly even by large volume ionization chambers with maximum differences in the lateral penumbra of 0.25 mm and 4% signal reduction at the field center. In contrast, radiation techniques with collimation are not accurately represented by the investigated detectors as indicated by a penumbra broadening up to 1.6 mm for passive scattering with collimators and 2.2 mm for pencil beam scanning with collimators. For a 3 mm diameter collimator field, a signal reduction at field center between 7.6% and 60.7% was asserted. Lateral dose profile measurements have been corrected via deconvolution with the corresponding K(x,y) to obtain the undisturbed D(x,y). Corrected output ratios of the passively scattered collimated fields obtained for the microDiamond, microSilicon and PinPoint 3D show agreement better than 0.9% (one standard deviation) for the smallest field size of 3 mm. CONCLUSION: Point detector perturbations in small proton fields created with three delivery techniques were quantified and found to be especially pronounced for collimated small proton fields with steep dose gradients. Among all investigated detectors, the microSilicon diode showed the smallest perturbations. The correction strategies based on detector's K(x,y) were found suitable for obtaining unperturbed lateral dose profiles and output factors. Approximation of K(x,y) by considering only the geometrical averaging effect has been shown to provide reasonable prediction of the detector's volume effect. The findings of this work may be used to guide the choice of point detectors in various proton fields and to contribute toward the development of a code of practice for small field proton dosimetry.


Assuntos
Prótons , Radiometria , Método de Monte Carlo , Radiometria/métodos , Aceleradores de Partículas , Algoritmos , Fótons/uso terapêutico
19.
Eur J Nucl Med Mol Imaging ; 50(7): 1881-1896, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808000

RESUMO

PURPOSE: Partial volume effect (PVE) is a consequence of the limited spatial resolution of PET scanners. PVE can cause the intensity values of a particular voxel to be underestimated or overestimated due to the effect of surrounding tracer uptake. We propose a novel partial volume correction (PVC) technique to overcome the adverse effects of PVE on PET images. METHODS: Two hundred and twelve clinical brain PET scans, including 50 18F-Fluorodeoxyglucose (18F-FDG), 50 18F-Flortaucipir, 36 18F-Flutemetamol, and 76 18F-FluoroDOPA, and their corresponding T1-weighted MR images were enrolled in this study. The Iterative Yang technique was used for PVC as a reference or surrogate of the ground truth for evaluation. A cycle-consistent adversarial network (CycleGAN) was trained to directly map non-PVC PET images to PVC PET images. Quantitative analysis using various metrics, including structural similarity index (SSIM), root mean squared error (RMSE), and peak signal-to-noise ratio (PSNR), was performed. Furthermore, voxel-wise and region-wise-based correlations of activity concentration between the predicted and reference images were evaluated through joint histogram and Bland and Altman analysis. In addition, radiomic analysis was performed by calculating 20 radiomic features within 83 brain regions. Finally, a voxel-wise two-sample t-test was used to compare the predicted PVC PET images with reference PVC images for each radiotracer. RESULTS: The Bland and Altman analysis showed the largest and smallest variance for 18F-FDG (95% CI: - 0.29, + 0.33 SUV, mean = 0.02 SUV) and 18F-Flutemetamol (95% CI: - 0.26, + 0.24 SUV, mean = - 0.01 SUV), respectively. The PSNR was lowest (29.64 ± 1.13 dB) for 18F-FDG and highest (36.01 ± 3.26 dB) for 18F-Flutemetamol. The smallest and largest SSIM were achieved for 18F-FDG (0.93 ± 0.01) and 18F-Flutemetamol (0.97 ± 0.01), respectively. The average relative error for the kurtosis radiomic feature was 3.32%, 9.39%, 4.17%, and 4.55%, while it was 4.74%, 8.80%, 7.27%, and 6.81% for NGLDM_contrast feature for 18F-Flutemetamol, 18F-FluoroDOPA, 18F-FDG, and 18F-Flortaucipir, respectively. CONCLUSION: An end-to-end CycleGAN PVC method was developed and evaluated. Our model generates PVC images from the original non-PVC PET images without requiring additional anatomical information, such as MRI or CT. Our model eliminates the need for accurate registration or segmentation or PET scanner system response characterization. In addition, no assumptions regarding anatomical structure size, homogeneity, boundary, or background level are required.


Assuntos
Compostos de Anilina , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
20.
Asia Ocean J Nucl Med Biol ; 11(1): 44-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36619190

RESUMO

Objectives: The spatial resolution of emission tomographic imaging systems can lead to a significant underestimation in the apparent radioactivity concentration in objects of size comparable to the resolution volume of the system. The aim of this study was to investigate the impact of the partial volume effect (PVE) on clinical imaging in PET and SPECT with current state-of-the-art instrumentation and the implications that this has for radionuclide dosimetry estimates. Methods: Using the IEC Image Quality Phantom we have measured the underestimation in observed uptake in objects of various sizes for both PET and SPECT imaging conditions. Both single pixel measures (i.e., SUVmax) and region of interest mean values were examined over a range of object sizes. We have further examined the impact of the PVE on dosimetry estimates in OLINDA in 177Lu SPECT imaging based on a subject with multiple somatostatin receptor positive paragangliomas in the head and neck. Results: In PET, single pixel estimates of uptake are affected for objects less than approximately 18 mm in minor axis with existing systems. In SPECT imaging with medium energy collimators (e.g., for 177Lu imaging), however, the underestimates are far greater, where single pixel estimates in objects less than 2-3×the resolution volume are significantly impacted. In SPECT, region of interest mean values are underestimated in objects less than 10 cm in diameter. In the clinical case example, the dosimetry measured with SPECT ranged from more than 60% underestimate in the largest lesion (28×22 mm in maximal cross-section; 10.2 cc volume) to >99% underestimate in the smallest lesion (4×5 mm; 0.06 cc). Conclusion: The partial volume effect remains a significant factor when estimating radionuclide uptake in vivo, especially in small volumes. Accurate estimates of absorbed dose from radionuclide therapy will be particularly challenging until robust solutions to correct for the PVE are found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...