Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.954
Filtrar
1.
J Environ Sci (China) ; 149: 200-208, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181634

RESUMO

The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.


Assuntos
Aerossóis , Monitoramento Ambiental , Análise Espectral Raman , Água , Concentração de Íons de Hidrogênio , Análise Espectral Raman/métodos , Água/química , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Material Particulado/análise
2.
J Environ Sci (China) ; 149: 46-56, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181658

RESUMO

Phthalic acid esters (PAEs) are a group of compounds widespread in the environment. To investigate the occurrence and accumulation characteristics of PAEs, surface water samples were collected from the Three Gorges Reservoir area, China. The total concentrations of 11 analyzed PAEs (∑11PAEs) in the collected water samples ranging from 197.7 to 1,409.3 ng/L (mean ± IQR: 583.1 ± 308.4 ng/L). While DEHP was the most frequently detected PAE, DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3% of the ∑11PAEs. The concentrations of the ∑11PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from the middle reaches. To better understand the transport and fate of the PAEs, seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction (QWASI). The simulated and measured values were close for most PAEs, and differences are within one order of magnitude even for the worst one. For all simulated PAEs, water and particle inflow were main sources in the reservoir, whereas water outflow and degradation in water were important removal pathways. The contribution ratios of different sources/losses varied from PAEs, depending on their properties. The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based on monitoring or simulating results were all far exceeded the safety threshold value, implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.


Assuntos
Monitoramento Ambiental , Ésteres , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/análise , China , Poluentes Químicos da Água/análise , Ésteres/análise , Rios/química , Modelos Químicos
3.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181669

RESUMO

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Assuntos
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerossóis , Modelos Químicos , Poluentes Atmosféricos/química , Simulação de Dinâmica Molecular , Atmosfera/química
4.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181682

RESUMO

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Assuntos
Biomassa , Nanotubos de Carbono , Nanotubos de Carbono/química , Vírus de Plantas/fisiologia , Purificação da Água/métodos , Tobamovirus , Peróxidos
5.
J Environ Sci (China) ; 148: 263-273, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095162

RESUMO

The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2•-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Catálise , Bismuto/química , Purificação da Água/métodos
6.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095158

RESUMO

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Assuntos
Aerossóis , Poluentes Atmosféricos , Monoterpenos Bicíclicos , Umidade , Radical Hidroxila , Oxirredução , Aerossóis/química , Radical Hidroxila/química , Monoterpenos Bicíclicos/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Ozônio/química , Modelos Químicos , Atmosfera/química , Monoterpenos/química
7.
J Environ Sci (China) ; 148: 298-305, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095166

RESUMO

Ultrasonic humidifiers are commonly used in households to maintain indoor humidity and generate a large number of droplets or spray aerosols. However, there have been various health concerns associated with humidifier use, largely due to aerosols generated during operation. Here, we investigated the size distribution, chemical composition, and charged fraction of aerosol particles emitted from commercial ultrasonic humidifiers. Heavy metals in water used for humidifiers were found to be highly enriched in the ultrasonic humidifier aerosols (UHA), with the enrichment factors ranging from 102 to 107. This enrichment may pose health concerns for the building occupants, as UHA concentrations of up to 106 particles/cm3 or 3 mg/m3 were observed. Furthermore, approximately 90% of UHA were observed to be electrically charged, for the first time according to our knowledge. Based on this discovery, we proposed and tested a new method to remove UHA by using a simple electrical field. The designed electrical field in this work can efficiently remove 81.4% of UHA. Therefore, applying this electrical field could be an effective method to significantly reduce the health risks by UHA.


Assuntos
Aerossóis , Umidificadores , Metais Pesados , Aerossóis/análise , Metais Pesados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Ultrassom , Monitoramento Ambiental/métodos
8.
J Environ Sci (China) ; 148: 409-419, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095176

RESUMO

Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Material Particulado/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Substâncias Húmicas/análise , Qualidade da Água
9.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095180

RESUMO

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Assuntos
Aerossóis , Poluentes Atmosféricos , Modelos Químicos , Termodinâmica , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Material Particulado/química , Material Particulado/análise , Concentração de Íons de Hidrogênio , Tamanho da Partícula
10.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003032

RESUMO

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Assuntos
Carvão Vegetal , Dimetilnitrosamina , Tamanho da Partícula , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Dimetilnitrosamina/química , Cinética , Modelos Químicos
11.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003073

RESUMO

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Assuntos
Água Potável , Resistência Microbiana a Medicamentos , Metagenômica , Resistência Microbiana a Medicamentos/genética , Água Potável/microbiologia , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Microbiologia da Água
12.
Rev. biol. trop ; 72(1): e52916, ene.-dic. 2024. tab, graf
Artigo em Espanhol | SaludCR, LILACS | ID: biblio-1559320

RESUMO

Resumen Introducción: Varias presiones antrópicas sufren los ecosistemas acuáticos del piedemonte llanero en Colombia. La respuesta a estresores ambientales aún se desconoce en organismos bioindicadores como Leptohyphidae. Objetivo: Determinar la diversidad de ninfas de Leptohyphidae del río Quenane-Quenanito, en dos periodos hidrológicos contrastantes y su relación con algunas variables fisicoquímicas. Métodos: En diciembre (2014) y febrero (2015) se recolectaron organismos con red Surber en seis estaciones a lo largo del río. Se analizó la diversidad alfa y beta y se aplicó análisis de redundancia y modelos lineales generalizados con el fin de establecer la relación entre los taxones y las variables ambientales. Resultados: Se identificaron 369 organismos pertenecientes a cuatro géneros (Amanahyphes, Traverhyphes, Tricorythopsis y Tricorythodes), dos especies y ocho morfoespecies. Se reporta por primera vez para el departamento del Meta Amanahyphes saguassu. Se registró la mayor diversidad de ninfas en la transición a la sequía y la mayor abundancia en sequía. La diversidad beta señaló que la configuración del ensamblaje cambia a nivel espacial y temporal. Conclusiones: Los organismos de Leptohyphidae prefieren hábitats de corrientes, particularmente en el periodo de sequía, donde hallan alimento (hojarasca, detritos) y refugio para establecerse exitosamente; actividades antrópicas como la urbanización afectan notablemente la diversidad. La alta diversidad registrada en este pequeño río de piedemonte llanero refleja la necesidad de incrementar este tipo de trabajos y esfuerzos de recolección de material de estudio en la región.


Abstract Introduction: Various anthropic pressures affect the aquatic ecosystems of the foothills of Colombia. The response to environmental stressors is still unknown in bioindicator organisms such as Leptohyphidae. Objective: To determine the diversity of Leptohyphidae nymphs of the Quenane-Quenanito river, in two contrasting hydrological periods and its relationship with some physicochemical variables. Methods: In December (2014) and February (2015), organisms were collected with a Surber net at six stations along the current. Alpha and beta diversity was analyzed and redundancy analysis and generalized linear model were applied to establish the relationship between taxa and environmental variables. Results: Were identified 369 organisms belonging to four genera (Amanahyphes, Traverhyphes, Tricorythopsis, and Tricorythodes), two species, and eight morphospecies. Amanahyphes saguassu is reported for the first time for the Meta department. High diversity of Leptohyphidae nymphs was recorded in the transition to drought season and greater abundance in drought. Beta diversity indicated that the configuration of the assemblage changes spatially and temporally. Conclusions: Leptohyphidae organisms prefer fast habitats, particularly in the dry period where they find food (leaf litter, detritus) and shelter to establish themselves successfully; anthropic activities such as urbanization notably affect diversity. The high diversity recorded in this small river in the foothills of the plains reflects the need to increase this type of works and collection efforts of study material in the region.


Assuntos
Animais , Ephemeroptera/classificação , Qualidade da Água , Colômbia , Insetos/classificação
13.
SAGE Open Nurs ; 10: 23779608241272607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139193

RESUMO

Introduction: Insufficient knowledge of intravenous fluid therapy is a significant challenge contributing to morbidity and mortality in hospitalized patients. Nurses play a critical role in evaluating patients' fluid and electrolyte balance as well as in restoring fluid levels. Various studies have indicated a deficiency in nurses' knowledge of intravenous therapy, yet this remains understudied in many settings, including Namibia. Objectives: To assess nurses' knowledge of intravenous fluid therapy and to describe the variables associated with knowledge of intravenous fluid therapy at a teaching hospital in Namibia. Methods: A cross-sectional online survey involving 164 nurses who were recruited using total population sampling. Data were collected between September and November 2021, using a self-administered 14-item validated tool (α = 0.8). Data analysis was conducted using SPSSv28.0 software. Results: The majority of nurses (84%) in this study exhibited an insufficient level of knowledge regarding intravenous therapy, with only a minority (16%) demonstrating a moderately adequate understanding of intravenous fluid therapy. A significant positive correlation was found between educational qualification and knowledge of intravenous therapy (r = 0.21; p = .01). Conclusion: The study's results indicate a worrying trajectory in nurses' knowledge of intravenous therapy. These findings underscore the need for hospitals to establish comprehensive training programs for nurses to guarantee the provision of secure and efficient intravenous therapy. Additional research is needed to investigate how educational qualifications impact patient outcomes related to intravenous therapy.

14.
Sci Rep ; 14(1): 18894, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143085

RESUMO

This article delves into the dynamic constructions of distinctive traveling wave solutions for wave circulation in shallow water mechanics, specifically addressing the time-fractional couple Drinfel'd-Sokolov-Wilson (DSW) equation. Introducing the previously untapped e x p ( - ϕ ( ξ ) ) -expansion method, we successfully generate a diverse set of analytic solutions expressed in hyperbolic, trigonometric, and rational functions, each with permitted parameters. Visualization through three-dimensional (3D) as well two-dimensional (2D) plots, including contour plots, reveals inherent wave phenomena in the DSW equation. These newly obtained wave solutions serve as a catalyst for refining theories in applied science, offering a means to validate mathematical simulations for the proliferation of waves in shallow water as well as other nonlinear scenarios. Obtained wave solutions demonstrate the bright soliton, periodic, multiple soliton, and kink soliton shape. The simplicity and efficacy of the implemented methods are demonstrated, providing a valuable tool for approximating the considered equation. All figures are devoted to demonstrate the complete wave futures of the attained solutions to the studied equation with the collaboration of specific selections of the chosen parameters. Moreover, it may have summarized that the attained wave solutions and their physical phenomena might be useful to comprehend the various kind of wave propagation in mathematical physics and engineering.

15.
Sci Rep ; 14(1): 18849, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143112

RESUMO

This study aimed to assess the current water quality status across various regions within the Fayoum depression by examining water canals, drains, and potential contaminants impacting public health and the local ecosystem. Additionally, an adsorption treatability investigation was conducted on various antibiotics identified during the assessment. Fifteen sampling points were selected across the Fayoum depression, covering surface water bodies and agricultural drainage systems during both winter and summer seasons. Physico-chemical, microbiological, and antibiotic analyses were performed on collected water samples. The water quality parameters investigated included pH, electrical conductivity, total dissolved solids (TDS), total coliforms, fecal coliforms, and concentrations of antibiotics such as ciprofloxacin and tetracycline. The findings revealed significant variations in water quality parameters among different water sources, categorizing them into three types: irrigation canals, polluted canals, and drains. High contamination levels were observed in certain water canals and drains due to untreated sewage and agricultural drainage discharge. Notably, elevated TDS levels (exceeding 1200 mg/L), microbial indicators count (with total coliforms reaching up to 2.3 × 106 CFU/100 mL), and antibiotics (with concentrations of ciprofloxacin and tetracycline exceeding 4.6 µg/L) were detected. To mitigate antibiotic contamination, a Phyto-adsorption treatability study using magnetite nanoparticles prepared with Phragmites australis plant extract demonstrated promising results, achieving complete removal of high antibiotic concentrations with an adsorption capacity of up to 67 mg/g. This study provides updated insights into water quality in the Fayoum depression and proposes a novel approach for addressing antibiotic contamination, potentially safeguarding human and environmental health.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Qualidade da Água , Egito , Antibacterianos/análise , Poluentes Químicos da Água/análise , Adsorção , Monitoramento Ambiental/métodos , Microbiologia da Água , Humanos , Ciprofloxacina/análise , Purificação da Água/métodos
16.
Free Radic Biol Med ; 224: 50-61, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147072

RESUMO

Hydrogen-rich water (HRW) is a beverage containing a high concentration of hydrogen that has been researched for its antioxidant, anti-apoptotic, and anti-inflammatory properties in asthma. This study investigates the potential therapeutic impact of HRW on the gut-lung axis. Using 16S rRNA and serum metabolomics, we examined changes in gut microbiota and serum metabolites in asthmatic mice after HRW intervention, followed by validation experiments. The findings revealed that HRW influenced gut microbiota by increasing Ligilactobacillus and Bifidobacterium abundance and enhancing the presence of indole-3-acetic acid (IAA), a microbially derived serum metabolite. Both in vivo and in vitro experiments showed that HRW's protective effects against airway inflammation in asthmatic mice may be linked to the gut microbiota, with IAA potentially playing a role in reducing asthmatic airway inflammation through the aryl hydrocarbon receptors (AhR) signaling pathway. In summary, HRW can modify gut microbiota, increase Bifidobacterium abundance, elevate microbial-derived IAA levels, and activate AhR, which could potentially alleviate inflammation in asthma.

17.
Sci Total Environ ; 951: 175198, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39128523

RESUMO

Water is essential at various stages of winemaking, from irrigation in the vineyard to cleaning equipment and facilities, controlling fermentation temperatures, and diluting grape juice if necessary. Additionally, water is used for sanitation purposes to ensure the quality and safety of the final product. This article provides an overview of the existing knowledge regarding the use of water in wineries throughout the winemaking process, water consumption values, effluent treatment, efficient use of water measures, and water reuse. Different assessment methods, including Water Footprint (WF) and Life Cycle Assessment(LCA), provide varied insights into water use impacts, emphasizing the importance of standardized methodologies for accurate assessment and sustainable practices. This research showed that the characterization of the vinification processes of each type of wine is fundamental for further analysis on the environmental impact of winemaking regarding water use. It was also observed that WF is affected by factors like climate, irrigation needs, and cleaning procedures. Thus, efficient water management in all the stages of wine production is crucial to reduce the overall WF. Water efficiency measures may involve the modification of the production processes, reusing and recycling water and the implementation of cleaner production practices and technological innovations, such as automated fermentation systems that reduce water needs. Furthermore, waste management in wineries emphasizes the importance of sustainable practices and technological innovations to mitigate environmental impacts and enhance resource efficiency.

18.
Int J Biol Macromol ; 278(Pt 3): 134663, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134202

RESUMO

The conventional agar extraction method has drawbacks such as high energy consumption, low yield, poor quality, and possible residual harmful factors, which greatly limit its application in high-end fields such as biomedicine and high-end materials. This work explored a new freezing-thawing-high-temperature coupling technique for agar extraction. It increased the yield and the strength of agar by 10.6 % and 13.7 %, respectively, as compared to direct high-temperature extraction of agar (HA). The greater molecular weight and lower sulfate content of agar obtained from freeze-thaw cycles combined with high temperature extraction (FA) may be attributed to the desulfurization effect caused by freeze-thaw cycles and the preservation of the molecular chain structure. The reduction in sulfate content decreases the steric hindrance resistance of the polysaccharide chains, enhances their interactions, and promotes the regularity and density of the agar structure, while also improving its water retention and thermal stability. In conclusion, this research can offer a theoretical basis and guidance for the eco-friendly extraction of agar with improved agar characteristics and expended its applications.

19.
Heliyon ; 10(12): e32757, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39183873

RESUMO

Groundwater is vital for drinking, agriculture, and domestic use in Sokoban Wood Village, Ghana, but concerns exist about its quality. This study assessed the suitability of 20 groundwater samples for domestic purposes. The study was carried out in 2023. We collected samples from boreholes and hand-dug wells using standard methods, analyzing them for various physicochemical parameters (pH, electrical conductivity, turbidity, nitrates, fluorides, and heavy metals). The microbiological analysis assessed fecal coliforms and E. Coli to identify microbial contamination. Established methodologies were used to evaluate potential health risks (carcinogenic and non-carcinogenic) associated with heavy metals. The Water Quality Index (WQI), Hazard Potential Index (HPI), and Heavy Metal Evaluation Index (HEI) provided a comprehensive water quality evaluation. The results revealed that the water fell below the recommended WHO pH range for drinking water. While most other parameters and heavy metals fell within WHO guidelines, 25 % of the samples contained fecal coliforms and E. Coli, indicating ongoing microbial contamination. The overall cancer risk was low for all age groups. Although some parameters met WHO standards, the WQI classified 20 % of the samples as not of good quality. Despite this, the HPI and HEI (-4.62 and 0.001) suggested generally good water quality based on heavy metal content. In conclusion, despite some positive indicators, acidic water and microbial contamination raise concerns. Regular monitoring and potential treatment measures are crucial to ensure safe drinking water for the Sokoban Wood Village community.

20.
PeerJ ; 12: e17954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184390

RESUMO

Background: Soil water content is one of the critical indicators in agricultural systems. Visible/near-infrared hyperspectral remote sensing is an effective method for soil water estimation. However, noise removal from massive spectral datasets and effective feature extraction are challenges for achieving accurate soil water estimation using this technology. Methods: This study proposes a method for hyperspectral remote sensing soil water content estimation based on a combination of continuous wavelet transform (CWT) and competitive adaptive reweighted sampling (CARS). Hyperspectral data were collected from soil samples with different water contents prepared in the laboratory. CWT, with two wavelet basis functions (mexh and gaus2), was used to pre-process the hyperspectral reflectance to eliminate noise interference. The correlation analysis was conducted between soil water content and wavelet coefficients at ten scales. The feature variables were extracted from these wavelet coefficients using the CARS method and used as input variables to build linear and non-linear models, specifically partial least squares (PLSR) and extreme learning machine (ELM), to estimate soil water content. Results: The results showed that the correlation between wavelet coefficients and soil water content decreased as the decomposition scale increased. The corresponding bands of the extracted wavelet coefficients were mainly distributed in the near-infrared region. The non-linear model (ELM) was superior to the linear method (PLSR). ELM demonstrated satisfactory accuracy based on the feature wavelet coefficients of CWT with the mexh wavelet basis function at a decomposition scale of 1 (CWT(mexh_1)), with R2, RMSE, and RPD values of 0.946, 1.408%, and 3.759 in the validation dataset, respectively. Overall, the CWT(mexh_1)-CARS-ELM systematic modeling method was feasible and reliable for estimating the water content of sandy clay loam.


Assuntos
Aprendizado de Máquina , Solo , Água , Análise de Ondaletas , Solo/química , Água/análise , Água/química , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Análise dos Mínimos Quadrados , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...