Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150333

RESUMO

Owing to the overlapping and cross-interference of absorption lines in multicomponent gases, the simultaneous measurement of such gases via laser absorption spectroscopy frequently necessitates the use of supplementary pressure sensors to distinguish the spectral lines. Alternatively, it requires multiple lasers combined with time-division multiplexing to independently scan the absorption peaks of each gas, thereby preventing interference from other gases. This inevitably escalates both the cost of the system and the complexity of the gas pathway. In response to these challenges, a mid-infrared sensor employing a neural network-based decoupling algorithm for aliasing spectral is developed, enabling the simultaneous detection of methane(CH4), water vapor(H2O), and ethane(C2H6). The sensor system underwent evaluation in a controlled laboratory environment. Allan deviation analysis revealed that the minimum detection limits for CH4,H2O, and C2H6 were 6.04, 118.44, and 1 ppb, respectively, with an averaging time of 3 s. The performance of the proposed sensor demonstrates that the aliasing spectral decoupling algorithm based on neural network combined with wavelength-modulated spectroscopy technology has the advantages of high sensitivity, low cost and low complexity, showing its potential for simultaneous detection of multicomponent trace gases in various fields.

2.
Neurophotonics ; 11(2): 025002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681965

RESUMO

Significance: Although measurements of near-infrared light diffusely reflected from the head and other biological tissues are commonly used to generate images revealing changes in the concentrations of oxy- and deoxy-hemoglobin, static imaging of absolute concentrations has been inhibited by the unknown and variable coupling between the optical probe and the skin, to which hair is often a significant contributor. Measurements of spectral derivatives provide a means of overcoming this shortcoming. Aim: The aim is to demonstrate experimentally that measurements of the derivative of the attenuation of the detected signal with respect to wavelength can be used to achieve images that are immune to the spatial variation of hair on the surface. The objective is to generate topographic images representative of static absorbing properties rather than retrieving absolute optical coefficients, which requires a tomographic approach. Approach: The surface of a tissue-equivalent phantom, containing targets with different concentrations of absorbing dye, was coated with a layer of dark hair. The phantom was then imaged using a broadband source and spectrometer, and prior knowledge of the absorbing characteristics of the dye and of melanin was used to acquire separate images of each. Results: The targets within the phantom are revealed with remarkable clarity, although a nonlinear relationship between the target contrast and absorption was observed. This nonlinear behavior was confirmed and explained using a Monte Carlo model of light propagation in a slab of similar absorbing properties. Conclusions: A spectral derivative approach could be an effective tool for in vivo topographic imaging of the static optical properties of the brain and other tissues, avoiding the deleterious effects of hair.

3.
Appl Spectrosc ; 78(1): 76-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956465

RESUMO

A standoff methane (CH4) sensor with actual hard topographic targets (usually called non-cooperative targets) is essential for natural gas pipeline leakage inspection and many other practical applications. To address this requirement, a miniaturized and low-power-consumption gas sensor was developed based on tunable diode laser absorption spectroscopy for standoff CH4 detection with a non-cooperative target. Wavelength modulation spectroscopy with a 1f normalized 2f detection method was employed for calibration-free CH4 measurement. A Kalman filter algorithm was used to improve the precision of the detection. The performance of the standoff CH4 sensor was evaluated comprehensively under various conditions, including different incident angles, different hard topographic targets, and different standoff distances. The results show that the measurement precision is 0.107% and the sensitivity is 4.08 parts per million per meter (ppm·m) with a time resolution of 1 s and a standoff distance of 40 m. The detection limit can achieve 1.24 ppm·m at an optimal integration time of 70 s. This sensor can be easily integrated into mobile platforms, which lays the foundation for intelligent leak inspection.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123750, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113557

RESUMO

The simultaneous detection of fractional exhaled nitric oxide (FeNO) and end-tidal carbon dioxide (ETCO2) is of great importance for the distinguishing and diagnosis of asthma and chronic obstructive pulmonary disease (COPD), providing more comprehensive information on respiratory disorders. This work demonstrates a simultaneous ETCO2 and FeNO detection system based on quantum cascade laser absorption spectroscopy (QCLAS) technology was presented. The system employs wavelength modulation spectroscopy (WMS) technology and the Herriott multi-pass cell, achieving a detection limit of 2.82 ppb for nitric oxide (NO) and 0.05 % for carbon dioxide (CO2). Real-time exhalation measurements were performed on volunteers with varying ETCO2 and FeNO levels, and the results of the test can accurately distinguish whether the corresponding volunteer was healthy, had asthma or COPD. The effect of exhalation flow rate on the concentration of the two gases was explored. A range of expiratory flow rates were tested in the flow rate interval from 1 to 4 L/min, and there was always an inverse relationship between expiratory flow rate and FeNO concentration, but flow rate changes did not affect ETCO2 concentration. The results indicate that this detection system can simultaneously and effectively measure ETCO2 and FeNO concentrations in real-time.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Dióxido de Carbono , Teste da Fração de Óxido Nítrico Exalado , Lasers Semicondutores , Testes Respiratórios/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Asma/diagnóstico , Óxido Nítrico , Análise Espectral
5.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514791

RESUMO

Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that can be deployed on ground-based or aerial vehicles can provide scalable solutions for high throughput measurements but require relatively compact and low-power sensor systems. This contribution presents an ammonia sensor based on wavelength modulation spectroscopy (WMS) integrated with a Herriott multi-pass cell and a quantum cascade laser (QCL) at 10.33 µm oriented to mobile use. An open-path configuration is used to mitigate sticky-gas effects and achieve high time-response. The final sensor package is relatively small (~20 L), lightweight (~3.5 kg), battery-powered (<30 W) and operates autonomously. Details of the WMS setup and analysis method are presented along with laboratory tests showing sensor accuracy (<~2%) and precision (~4 ppb in 1 s). Initial field deployments on both ground vehicles and a fixed-wing unmanned aerial vehicle (UAV) are also presented.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123020, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37364413

RESUMO

SU8 is a cost-effective polymer material that is highly suitable for large-scale fabrication of waveguides. However, it has not been employed for on-chip gas measurement utilizing infrared absorption spectroscopy. In this study, we propose a near-infrared on-chip acetylene (C2H2) sensor using SU8 polymer spiral waveguides for the first time to our knowledge. The performance of the sensor based on wavelength modulation spectroscopy (WMS) was experimentally validated. By incorporating the proposed Euler-S bend and Archimedean spiral SU8 waveguide, we achieved a reduction in the sensor's size by over fifty percent. Leveraging the WMS technique, we evaluated the C2H2 sensing performance at 1532.83 nm for SU8 waveguides of lengths 7.4 cm and 13 cm. The limit of detection (LoD) values were 2197.1 ppm (parts per million) and 425.5 ppm, respectively, with an averaging time of 0.2 s. Furthermore, the experimentally obtained optical power confinement factor (PCF) closely approximated the simulated value, with a value of 0.0172 compared to the simulated value of 0.016. The waveguide loss is measured to be 3 dB/cm. The rise time and fall time were approximately 2.05 s and 3.27 s, respectively. This study concludes that the SU8 waveguide exhibits significant potential for high-performance on-chip gas sensing in the near-infrared wavelength range.

7.
Sensors (Basel) ; 23(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299833

RESUMO

In the wavelength modulation spectroscopy (WMS) gas detection system, the laser diode is usually stabilized at a constant temperature and driven by current injection. So, a high-precision temperature controller is indispensable in every WMS system. To eliminate wavelength drift influence and improve detection sensitivity and response speed, laser wavelength sometimes needs to be locked at the gas absorption center. In this study, we develop a temperature controller to an ultra-high stability level of 0.0005 °C, based on which a new laser wavelength locking strategy is proposed to successfully lock the laser wavelength at a CH4 absorption center of 1653.72 nm with a fluctuation of fewer than 19.7 MHz. For 500 ppm CH4 sample detection, the 1σ SNR is increased from 71.2 dB to 80.5 dB and the peak-to-peak uncertainty is improved from 1.95 ppm down to 0.17 ppm with the help of a locked laser wavelength. In addition, the wavelength-locked WMS also has the absolute advantage of fast response over a conventional wavelength-scanned WMS system.


Assuntos
Febre , Lasers Semicondutores , Humanos , Temperatura , Análise Espectral , Metano
8.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112283

RESUMO

The main disadvantage of the electromagnetic acoustic transducer (EMAT) is low energy-conversion efficiency and low signal-to-noise ratio (SNR). This problem can be improved by pulse compression technology in the time domain. In this paper, a new coil structure with unequal spacing was proposed for a Rayleigh wave EMAT (RW-EMAT) to replace the conventional meander line coil with equal spacing, which allows the signal to be compressed in the spatial domain. Linear and nonlinear wavelength modulations were analyzed to design the unequal spacing coil. Based on this, the performance of the new coil structure was analyzed by the autocorrelation function. Finite element simulation and experiments proved the feasibility of the spatial pulse compression coil. The experimental results show that the received signal amplitude is increased by 2.3~2.6 times, the signal with a width of 20 µs could be compressed into a δ-like pulse of less than 0.25 µs and the SNR is increased by 7.1-10.1 dB. These indicate that the proposed new RW-EMAT can effectively enhance the strength, time resolution and SNR of the received signal.

9.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617071

RESUMO

The line width of different line shapes is a very important parameter in absorption spectroscopy sensing techniques. Based on the high sensitivity and low noise properties of wavelength modulation spectroscopy, we report a novel line width measurement method. After theoretically proving the relationship between line width, modulation amplitude and the amplitude of the second harmonic at the center frequency, the absorption lines of CH4 near 6046.96 cm-1 and CO2 4989.97 cm-1 were chosen for simulation, and the relative errors of the line width between our method and theoretical data were kept at about 1%. A distributed feedback laser diode operating near 1653 nm with three different concentrations of CH4 was used for experimental validation, and the results were consistent with the numerical simulation. Additionally, since only the peaks of second harmonic need to be measured, the advantages of wavelength modulation can be utilized while reducing the difficulty of data acquisition.

10.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679417

RESUMO

A new version of a sensor for temperature measurements in the case of strong laser intensity fluctuation was developed. It was based on tunable diode laser absorption spectroscopy (TDLAS) with wavelength modulation, logarithmic conversion of the absorption signal, and detection of the first harmonic of the modulation frequency. The efficiency of the technique was demonstrated under experimental conditions with excess multiplicative noise. Temperature was evaluated from the ratio of integrated absorbance of two lines of the water molecule with different lower energy levels. Two algorithms of data processing were tested, simultaneous fitting of two spectral ranges with selected absorption lines and independent fitting of two absorption lines profiles. The correctness of the gas temperature evaluation was verified by simultaneous measurements with a commercial thermocouple. An error in temperature evaluation of less than 40 at 1000 K was achieved even when processing a single scan of the diode lasers.


Assuntos
Algoritmos , Lasers Semicondutores , Temperatura , Análise Espectral , Água
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121908, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174401

RESUMO

Highly sensitive and stable measurement of methane (CH4) and acetylene (C2H2) based on a novel dual-channel off-beam quartz-enhanced photoacoustic spectroscopy and time-division multiplexing technique was realized by a compact 3D-printed gas cell with a size of 3 × 2 × 1 cm3. Two near-infrared distributed feedback diode lasers were employed to target the CH4 absorption line at 6046.9 cm-1 and the C2H2 absorption line at 6521.2 cm-1, respectively. Second-harmonic wavelength modulation spectroscopy method was used for photoacoustic signal recovery. A minimum detection level of âˆ¼ 7.63 parts-per-million in volume (ppmv) for CH4 and a level of âˆ¼ 17.47 ppmv for C2H2 were achieved with a 1 s lock-in integration time, leading to a normalized noise equivalent absorption (NNEA) coefficient of 7.24 × 10-8 cm-1·W·Hz-1 and 3.73 × 10-8 cm-1·W·Hz-1 for CH4 and C2H2, respectively. Allan-Werle deviation analysis was employed to evaluate the stability and the minimum detection limit (MDL) of the developed photoacoustic CH4/C2H2 dual-gas photoacoustic sensor. Owing to the high stability of the developed sensor system, an MDL of âˆ¼ 0.73 ppmv and an MDL of âˆ¼ 1.60 ppmv with a 100 s averaging time were achieved for CH4 and C2H2, respectively.


Assuntos
Metano , Quartzo , Análise Espectral/métodos , Metano/análise , Acetileno , Lasers Semicondutores
12.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236529

RESUMO

This paper proposes an improved wavelength modulation spectroscopy with the 2nd harmonics normalized by the 1st harmonics (WMS-2f/1f) spectral fitting method using the orthogonal test in selection of the initial parameters. The method is implemented and validated experimentally in measurement of the temperature of diluted H2O in air (1 atm, 291K, 0.7%) by the WMS-2f/1f technique. The transition center wavelength targets near 1344 nm. Results demonstrate that the sum-square-error (SSE) between the calculated and measured WMS-2f/1f spectral profiles decreases significantly within given updating times when the optimized initial parameters are used. Compared to the conventional method, the optimized initial parameters can make the fitting routine converge more efficiently. The temperature of the vapor inferred from the proposed spectral fitting method are in good agreement with the true values.

13.
Front Chem ; 10: 1021145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212055

RESUMO

A resonant photoacoustic spectrometer (PAS) was developed for detecting trace atmospheric CH4. The sensitivity of the PAS was significantly increased via a Herriott-type multipass cell with a beam pattern concentrated in the cavity. The effective optical pathlength of the PAS can be optimized to 6.8 m with 34 reflections and a diameter of 6 mm. A distributed feedback diode laser at 1,653 nm was employed as the light source, and wavelength modulation spectroscopy was used for the 2nd harmonic signal to reduce the noise of the system. The resonant cell of PA and optimal modulation frequency were obtained by varying the measurements. In comparison with a single path, the sensitivity of the multipass strategy was improved 13 times. To evaluate the long-term stability and minimum detection limit (MDL) of the system, an Allan variance analysis was performed, and the analysis illustrated that the MDL accomplished 116 ppb at an average time of 84 s. The system was utilized for 2 days test campaign to validate the feasibility and robustness of the sensor. The system provides a promising technique for online monitoring of greenhouse gasses.

14.
Front Chem ; 10: 953684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082199

RESUMO

Portable or even on-chip detection of methane (CH4) is significant for environmental protection and production safety. However, optical sensing systems are usually based on discrete optical elements, which makes them unsuitable for the occasions with high portability requirement. In this work, we report on-chip silicon-on-insulator (SOI) waveguide CH4 sensors at 3.291 µm based on two measurement schemes including direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS). In order to suppress noise, Kalman filter was adopted in signal processing. By optimizing the waveguide cross-section structure, an etch depth of 220 nm was selected with an experimentally high power confinement factor (PCF) of 23% and a low loss of only 0.71 dB/cm. A limit of detection (LoD) of 155 parts-per-million (ppm) by DAS and 78 ppm by WMS at an averaging time of 0.2 s were obtained for a 2 cm-long waveguide sensor. Compared to the chalcogenide (ChG) waveguide CH4 sensors at the same wavelength, the reported sensor reveals the minimum waveguide loss and the lowest LoD. Therefore the SOI waveguide sensor has the potential of on-chip gas sensing in the mid-infrared (MIR) waveband.

15.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015904

RESUMO

Accurately quantifying unsteady methane venting from key oil and gas sector sources such as storage tanks and well casing vents is a critical challenge. Recently, we presented an optical sensor to meet this need that combines volume fraction and Doppler shift measurements using wavelength modulation spectroscopy with 2f harmonic detection to quantify mass flux of methane through a vent line. This paper extends the previous effort through a methodical component-by-component investigation of potential sources of thermally-induced measurement drift to guide the design of an updated sensor. Test data were analyzed using an innovative signal processing technique that permitted quantification of background wavelength modulation spectroscopy signal drift linked to specific components, and the results were successfully used to design a drift-resistant sensor. In the updated sensor, background signal strength was reduced, and stability improved, such that the empirical methane-fraction dependent velocity correction necessary in the original sensor was no longer required. The revised sensor improves previously reported measurement uncertainties on flow velocity from 0.15 to 0.10 m/s, while markedly reducing thermally-induced velocity drift from 0.44 m/s/K to 0.015 m/s/K. In the most general and challenging application, where both flow velocity and methane fraction are independently varying, the updated design reduces the methane mass flow rate uncertainty by more than a factor of six, from ±2.55 kg/h to ±0.40 kg/h. This new design also maintains the intrinsic safety of the original sensor and is ideally suited for unsteady methane vent measurements within hazardous locations typical of oil and gas facilities.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Análise Espectral , Incerteza
16.
Sensors (Basel) ; 22(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35957286

RESUMO

In this study, a strategy was developed for in situ, non-intrusive, and quantitative measurement of the oxides of nitrogen (NO and NO2) to describe emission characteristics in gas turbines. The linear calibration-free wavelength modulation spectroscopy (LCF-WMS) approach combined with the temperature profile-fitting strategy was utilized for trace NO and NO2 concentration detection with broad spectral interference from gaseous water (H2O). Transition lines near 1308 nm, 5238 nm, and 6250 nm were selected to investigate the H2O, NO, and NO2 generated from combustion. Experiments were performed under different equivalence ratios in a combustion exhaust tube, which was heated at 450-700 K, with an effective optical length of 1.57 m. Ultra-low NOx emissions were captured by optical measurements under different equivalence ratios. The mole fractions of H2O were in agreement with the theoretical values calculated using Chemkin. Herein, the uncertainty of the TDLAS measurements and the limitation of improving the relative precision are discussed in detail. The proposed strategy proved to be a promising combustion diagnostic technique for the quantitative measurement of low-absorbance trace NO and NO2 with strong H2O interference in real combustion gases.

17.
Front Chem ; 10: 930766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910718

RESUMO

In this article, a field deployable sensor was developed using a self-developed 4.58-µm continuous wave quantum cascade laser (CW-QCL) for the simultaneous detection of carbon monoxide (CO) and nitrous oxide (N2O), both of which have strong fundamental absorption bands in this waveband. The sensor is based on tunable diode laser absorption spectroscopy (TDLAS) technology, which combined a multi-pass gas cell (MPGC) with a 41 m optical path length to achieve high-precision detection. Meanwhile, the particle swarm optimization-kernel extreme learning machine (PSO-KELM) algorithm was applied for CO and N2O concentration prediction. In addition, the self-designed board-level QCL driver circuit and harmonic signal demodulation circuit reduce the sensor cost and size. A series of validation experiments were conducted to verify the sensor performance, and experiments showed that the concentration prediction results of the PSO-KELM algorithm are better than those of the commonly used back propagation (BP) neural networks and partial least regression (PLS), with the smallest root mean square error (RMSE) and linear correlation coefficient closest to 1, which improves the detection precision of the sensor. The limit of detection (LoD) was assessed to be 0.25 parts per billion (ppb) for CO and 0.27 ppb for N2O at the averaging time of 24 and 38 s. Field deployment of the sensor was reported for simultaneous detection of CO and N2O in the air.

18.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890763

RESUMO

Oxygen (O2) is a colorless and odorless substance, and is the most important gas in human life and industrial production. In this invited paper, a highly sensitive O2 sensor based on reflector-enhanced photoacoustic spectroscopy (PAS) is reported for the first time. A diode laser emitting at 760 nm was used as the excitation source. The diode laser beam was reflected by the adopted reflector to pass thorough the photoacoustic cell twice and further increase the optical absorption. With such enhanced absorption strategy, compared with the PAS system without the reflector, the reflector-enhanced O2-PAS sensor system had 1.85 times the signal improvement. The minimum detection limit (MDL) of such a reflector-enhanced O2-PAS sensor was experimentally determined to be 0.54%. The concentration response of this sensor was investigated when O2 with a different concentration was used. The obtained results showed it has an excellent linear concentration response. The system stability was analyzed by using Allan variance, which indicated that the MDL for such a reflector-enhanced O2-PAS sensor could be improved to 318 ppm when the integration time of this sensor system is 1560 s. Finally, the O2 concentration on the outside was continuously monitored for 24 h, indicated that this reflector-enhanced O2-PAS sensor system has an excellent measurement ability for actual applications in environmental monitoring, medical diagnostics, and other fields.


Assuntos
Monitoramento Ambiental , Oxigênio , Monitoramento Ambiental/métodos , Humanos , Oxigênio/análise , Análise Espectral/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121561, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35779472

RESUMO

In a wavelength modulation spectroscopy (WMS) gas sensing system, a scanning ramp combined with a high frequency sinusoidal signal is applied to drive the laser source. Generally, a wide wavelength scanning bandwidth realized by voltage scanning ramp is required to fully cover the target gas absorption profile. In this paper, a novel WMS-based strategy is proposed and verified in a CH4 detection system. The wavelength scanning bandwidth is compressed from âˆ¼659 pm to âˆ¼166 pm, even narrower than the half width at full height (HWFM) of the CH4 absorption profile. In addition, the second harmonic signal that induced by the absorption is increased threefold by virtue of making full use of the dynamic range of the preamplifier circuit, and the waveform distortion that comes from the residual amplitude modulation (RAM) effect is eliminated as well. Benefiting from the compressed driving current range, the thermal stability of the laser diode is improved from the original level of 0.5 °C to 0.1 °C. As a result, a linear sensitivity of 75.2 ppb is achieved within 0-3000 ppm CH4 concentration range at 12.7 s time constant.

20.
J Breath Res ; 16(4)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35688126

RESUMO

The analysis of human breath is a very active area of research, driven by the vision of a fast, easy, and non-invasive tool for medical diagnoses at the point of care. Millimeter-wave gas spectroscopy (MMWGS) is a novel, well-suited technique for this application as it provides high sensitivity, specificity and selectivity. Most of all, it offers the perspective of compact low-cost systems to be used in doctors' offices or hospitals. In this work, we demonstrate the analysis of breath samples acquired in a medical environment using MMWGS and evaluate validity, reliability, as well as limitations and perspectives of the method. To this end, we investigated 28 duplicate samples from chronic obstructive lung disease patients and compared the results to gas chromatography-mass spectrometry (GC-MS). The quantification of the data was conducted using a calibration-free fit model, which describes the data precisely and delivers absolute quantities. For ethanol, acetone, and acetonitrile, the results agree well with the GC-MS measurements and are as reliable as GC-MS. The duplicate samples deviate from the mean values by only 6% to 18%. Detection limits of MMWGS depend strongly on the molecular species. For example, acetonitrile can be traced down to 1.8 × 10-12mol by the MMWGS system, which is comparable to the GC-MS system. We observed correlations of abundances between formaldehyde and acetaldehyde as well as between acetonitrile and acetaldehyde, which demonstrates the potential of MMWGS for breath research.


Assuntos
Testes Respiratórios , Doença Pulmonar Obstrutiva Crônica , Acetaldeído , Acetonitrilas , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Gases , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Reprodutibilidade dos Testes , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...