Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Int J Phytoremediation ; : 1-18, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392243

RESUMO

Methylene blue, a cationic dye as a pollutant is discharged from industrial effluent into aquatic bodies. The dye is biomagnified through the food chain and is detrimental to the sustainability of aquatic flora. Despite of number of physico-chemical techniques of dye removal, the use of aquatic flora for bio-adsorption is encouraged. Thus, we used Salvinia molesta D. Mitch in bio-reduction of methylene blue on concentrations of 0, 10, 20, and 30 mg L-1 through 5 days with biosorption kinetics. The dye removal was concentration-dependent, maximized at 2 days with 30 mg L-1 which altered the relative growth rate (44%) of plants. Biosorption recorded 71% capacity at optimum pH (8.0), 24 h reducing major bond energies of amide, hydroxyl groups, etc. Bioaccumulation of dye changed potassium content (446%) under maximum dye concentration modifying tissues for dye sequestration. Reactive oxygen species were altered on dye reduction by oxidase (33%) with redox homeostasis by enzymes. Plants altered the metabolism with over accumulation of polyamines (51%), abscisic acids (448%), and phosphoenolpyruvate carboxylase (83%) on dye reduction. Thus, this study is rationalized with a sustainable approach where aquatic ecosystems can be decontaminated from dye toxicity with the exercise of bioresources like Salvinia molesta D. Mitch as herein.


Azo dyes as industrial effluents are more hazardous with their high solubility in water causing inhibition of life processes in aquatic ecosystem. Methylene blue as a dye, in the aquatic environment deteriorates the ecosystem by increasing a chemical oxygen demand, impairing light harnessing mechanism, inhibiting growth of microflora, recalcitrance, bioaccumulation, mutagenicity of the whole environment. Aquatic weed like Salvinia molesta D. Mitch is evident as an effective bio-adsorbent, bio-decolorization, finally dye removing material to reduce water pollution as an alternative strategy for environmental remediation.

2.
Front Plant Sci ; 15: 1437702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319007

RESUMO

Potato (Solanum tuberosum L.) cultivation in Pakistan faces challenges, with black scurf disease caused by Rhizoctonia solani Kühn being a significant concern. Conventional methods like chemical fungicides partially control it, but an effective solution is lacking. This study explores the potential of biofertilizers and soil amendments from Asteraceae weed biomass to manage the disease. Two potato varieties, Karoda and Sante, were chosen, and two biofertilizers, Fertibio and Feng Shou, were tested alone or with Xanthium strumarium biomass. Disease pressure was highest in the positive control, with significant reduction by chemical fungicide. X. strumarium biomass also decreased disease incidence significantly. Fertibio showed better efficacy than Feng Shou. Physiological and biochemical attributes of plants improved with biofertilizer and biomass application. Tuber weight, photosynthetic pigments, total protein content, and antioxidant enzymes (CAT, POX, and PPO) were positively correlated. Combined application of Fertibio and S. marianum biomass effectively managed black scurf disease. These eco-friendly alternatives could enhance disease management and yield. Future research should explore their cost-effectiveness, commercialization, and safety.

3.
Plant Methods ; 20(1): 144, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300566

RESUMO

Weeds are undesired plants competing with crops for light, nutrients, and water, negatively impacting crop growth. Identifying weeds in wheat fields accurately is important for precise pesticide spraying and targeted weed control. Grass weeds in their early growth stages look very similar to wheat seedlings, making them difficult to identify. In this study, we focused on wheat fields with varying levels of grass weed infestation and used unmanned aerial vehicles (UAVs) to obtain images. By utilizing deep learning algorithms and spectral analysis technology, the weeds were identified and extracted accurately from wheat fields. Our results showed that the precision of weed detection in scattered wheat fields was 91.27% and 87.51% in drilled wheat fields. Compared to areas without weeds, the increase in weed density led to a decrease in wheat biomass, with the maximum biomass decreasing by 71%. The effect of weed density on yield was similar, with the maximum yield decreasing by 4320 kg·ha- 1, a drop of 60%. In this study, a method for monitoring weed occurrence in wheat fields was established, and the effects of weeds on wheat growth in different growth periods and weed densities were studied by accurately extracting weeds from wheat fields. The results can provide a reference for weed control and hazard assessment research.

4.
J Environ Sci Health B ; 59(9): 584-594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39192720

RESUMO

The aim of this study was to evaluate the phytotoxic, genotoxic, cytotoxic and antimicrobial effects of the Mentha arvensis L. essential oil (EO). The biological activity of M. arvensis EO depended on the analyzed variable and the tested oil concentration. Higher concentrations of EO (20 and 30 µg mL-1) showed a moderate inhibitory effect on the germination and growth of seedlings of tested weed species (Bellis perennis, Cyanus segetum, Daucus carota, Leucanthemum vulgare, Matricaria chamomilla, Nepeta cataria, Taraxacum officinale, Trifolium repens and Verbena × hybrida). The results obtained also indicate that the EO of M. arvensis has some genotoxic, cytotoxic and proliferative potential in both plant and human in vitro systems. Similar results were obtained for antimicrobial activity against eight bacteria, including multidrug-resistant (MDR) strains [Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, extended-spectrum beta-lactamase-producing (ESBL) E. coli, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica serovar Enteritidis], with the effect on multidrug-resistant bacterial strains. Research indicates that the EO of M. arvensis shows phytotoxic, genotoxic, cytotoxic and antimicrobial effects, as well as its potential application as a herbicide and against various human diseases.


Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Mentha/química , Humanos , Germinação/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Plantas Daninhas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Óleos de Plantas/farmacologia
5.
Sci Rep ; 14(1): 18016, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097653

RESUMO

Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant-microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant-microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.


Assuntos
Microbiota , Rizosfera , Microbiologia do Solo , Microbiota/genética , Estados Unidos , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética
6.
PhytoKeys ; 245: 1-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113755

RESUMO

The genus Lycianthes (Dunal) Hassl. (Solanaceae) has in the past been treated as a section of the large genus Solanum L. but is more closely related to Capsicum L. Outside of the Americas, where the highest species diversity occurs, the genus is found in tropical and subtropical habitats from India to Japan and the Philippines, including the islands of Indonesia, New Guinea and the Solomons. The 19 species from Australia, New Guinea and the Pacific were treated in 'PhytoKeys 209'. Here I treat the remaining 10 species occurring across Asia; including two native species, L.biflora (Lour.) Bitter and L.oliveriana (Lauterb. & K.Schum) Bitter, and one cultivated species, L.rantonnetii (Carrière) Bitter that were also included in the earlier work. The Asian species treated here occupy a wide range of forested and disturbed habitats and are diverse in habit, ranging from epiphytic vines to small or medium sized trees, shrubs or creeping herbs. Many of the species are weedy plants of highly disturbed habitats and are best characterised as "ochlospecies", with complex polymorphic variation. Lycianthesrantonnetii, a species native to southern South America, is recorded as cultivated in India and Pakistan, but may be more widespread than collections indicate. The history of taxonomic treatments of Lycianthes in Asia is discussed, along with details of morphology found in all species. All species are treated in full, with complete morphological descriptions, including synonymy, lecto- or neotypifications, discussions of ecology and vernacular names, distribution maps and preliminary conservation assessments (for all except the cultivated L.rantonnetii). Searchable lists of all specimens examined are presented as Suppl. materials 1, 2.

7.
J Agric Food Chem ; 72(36): 19920-19930, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213540

RESUMO

Parasitic weeds, such as Orobanche and Striga, threaten crops globally. Contiguous efforts on the discovery and development of structurally novel seed germination stimulants targeting HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) have been made with the goal of weed control. Here, we demonstrate that a natural compound dehydrocostus lactone (DCL) exhibits effective "suicide germination" activity against Orobanche cumana and covalently binds to OcKAI2d2 on two catalytic serine sites with the second modification dependent on the first one. The same interactions and covalent modifications of DCL are also confirmed in AtKAI2. Further in-depth evolution analysis indicates that the proposed two catalytic sites are present throughout the streptophyte algae, hornworts, lycophytes, and seed plants. This discovery is particularly noteworthy as it signifies the first confirmation of a plant endogenous molecule directly binding to KAI2, which is valuable for unraveling the elusive identity of the KAI2 ligand and for targeting KAI2 paralogues for the development of novel germination stimulants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Lactonas , Orobanche , Serina , Orobanche/química , Orobanche/metabolismo , Orobanche/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Serina/metabolismo , Serina/química , Lactonas/metabolismo , Lactonas/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/química , Ligação Proteica , Hidrolases
8.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001158

RESUMO

Accurate weed detection is essential for the precise control of weeds in wheat fields, but weeds and wheat are sheltered from each other, and there is no clear size specification, making it difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was introduced into the C2f module to enhance the detection accuracy of the model by integrating input, local (CNN), and global (ViT) features. Secondly, a bidirectional feature pyramid network (BiFPN) was introduced to enhance the performance of multi-scale feature fusion. Furthermore, to address the weak generalization and slow convergence speed of the CIoU loss function for detection tasks, the bounding box regression loss function (MPDIOU) was used instead of the CIoU loss function to improve the convergence speed of the model and further enhance the detection performance. Finally, the model performance was tested on the wheat weed datasets. The experiments show that the YOLOv8-MBM proposed in this paper is superior to Fast R-CNN, YOLOv3, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv9, and other mainstream models in regards to detection performance. The accuracy of the improved model reaches 92.7%. Compared with the original YOLOv8s model, the precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respectively. In summary, the YOLOv8-MBM model successfully meets the requirements for accurate weed detection in wheat fields.


Assuntos
Plantas Daninhas , Triticum , Triticum/fisiologia , Plantas Daninhas/fisiologia , Redes Neurais de Computação , Algoritmos
9.
Evolution ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001649

RESUMO

Phenotypic plasticity can alter traits that are crucial to population establishment in a new environment, before adaptation can occur. How often phenotypic plasticity enables subsequent adaptive evolution is unknown, and examples of the phenomenon are limited. We investigated the hypothesis of plasticity-mediated persistence as a means of colonization of agricultural fields in one of the world's worst weeds, Raphanus raphanistrum ssp. raphanistrum. Using non-weedy native populations of the same species and subspecies as a comparison, we tested for plasticity-mediated persistence in a growth chamber reciprocal transplant experiment. We identified traits with genetic differentiation between the weedy and native ecotypes as well as phenotypic plasticity between growth chamber environments. We found that most traits were both plastic and differentiated between ecotypes, with the majority plastic and differentiated in the same direction. This suggests that phenotypic plasticity may have enabled radish populations to colonize and then adapt to novel agricultural environments.

10.
Sci Rep ; 14(1): 15228, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956286

RESUMO

In order to resolve the key genes for weed control by Trichoderma polysporum at the genomic level, we extracted the genomic DNA and sequenced the whole genome of T. polysporum strain HZ-31 on the Illumina Hiseq platform. The raw data was cleaned up using Trimmomatic and checked for quality using FastQC. The sequencing data was assembled using SPAdes, and GeneMark was used to perform gene prediction on the assembly results. The results showed that the genome size of T. polysporum HZ-31 was 39,325,746 bp, with 48% GC content, and the number of genes encoded was 11,998. A total of 148 tRNAs and 45 rRNAs were predicted. A total of 782 genes were annotated in the Carbohydrase Database, 757 genes were annotated to the Pathogen-Host Interaction Database, and 67 gene clusters were identified. In addition, 1023 genes were predicted to be signal peptide proteins. The annotation and functional analysis of the whole genome sequence of T. polymorpha HZ-31 provide a basis for the in-depth study of the molecular mechanism of its herbicidal action and more effective utilization for weed control.


Assuntos
Genoma Fúngico , Trichoderma , Sequenciamento Completo do Genoma , Trichoderma/genética , Sequenciamento Completo do Genoma/métodos , Anotação de Sequência Molecular , Composição de Bases , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética
11.
Plant Methods ; 20(1): 105, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014411

RESUMO

BACKGROUND: Rice field weed object detection can provide key information on weed species and locations for precise spraying, which is of great significance in actual agricultural production. However, facing the complex and changing real farm environments, traditional object detection methods still have difficulties in identifying small-sized, occluded and densely distributed weed instances. To address these problems, this paper proposes a multi-scale feature enhanced DETR network, named RMS-DETR. By adding multi-scale feature extraction branches on top of DETR, this model fully utilizes the information from different semantic feature layers to improve recognition capability for rice field weeds in real-world scenarios. METHODS: Introducing multi-scale feature layers on the basis of the DETR model, we conduct a differentiated design for different semantic feature layers. The high-level semantic feature layer adopts Transformer structure to extract contextual information between barnyard grass and rice plants. The low-level semantic feature layer uses CNN structure to extract local detail features of barnyard grass. Introducing multi-scale feature layers inevitably leads to increased model computation, thus lowering model inference speed. Therefore, we employ a new type of Pconv (Partial convolution) to replace traditional standard convolutions in the model. RESULTS: Compared to the original DETR model, our proposed RMS-DETR model achieved an average recognition accuracy improvement of 3.6% and 4.4% on our constructed rice field weeds dataset and the DOTA public dataset, respectively. The average recognition accuracies reached 0.792 and 0.851, respectively. The RMS-DETR model size is 40.8 M with inference time of 0.0081 s. Compared with three classical DETR models (Deformable DETR, Anchor DETR and DAB-DETR), the RMS-DETR model respectively improved average precision by 2.1%, 4.9% and 2.4%. DISCUSSION: This model is capable of accurately identifying rice field weeds in complex real-world scenarios, thus providing key technical support for precision spraying and management of variable-rate spraying systems.

12.
Environ Sci Pollut Res Int ; 31(37): 49891-49904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085693

RESUMO

The present study investigates the synergistic impact of earthworms (Eisenia fetida and Eudrilus eugeniae) and microbes during vermicomposting of invasive weed phytomass (Xanthium strumarium and Lantana camara). This study aims introducing an onsite solution for weed control while producing valuable organic manure. Vermitransformation and detailed characterization of mono- (VC1, VC2, VC4, VC5) and polyculture (VC3, VC6) of X. strumarium and L. camara has been reported for the first time employing E. fetida and E. eugeniae. The study achieved 45.16 ± 2.48-76.73 ± 1.37% vermiconvertion rate. The pH, conductivity, and concentration of heavy metals are effectively stabilized. Furthermore, it observed a significant reduction in total organic carbon (TOC) alongside the augmentation of nitrogen, phosphorus, potassium, calcium, and other trace elements (Zn, Ni, Fe). The ash content, humification index, and C/N ratio analysis established the maturity of the vermicompost. The macronutrient enhancement in the vermicompost samples was recorded 1.5- to 2.47-fold for total N, 1.19- to 1.48-fold in available P, 1.1- to 1.2-fold in total K, and 1.1- to 1.18-fold in total Ca. The germination index reveals a significant reduction in phytotoxicity, suggesting the production of mature and suitable vermicompost for agricultural use. Evaluating mono- and polyculture techniques, the research highlights the superiority of E. fetida over E. eugeniae. Further, the earthworm population and biomass have significantly increased by the end of 60-day experimental trial.


Assuntos
Lantana , Oligoquetos , Animais , Plantas Daninhas , Solo/química , Metais Pesados , Poluentes do Solo
14.
Trends Ecol Evol ; 39(9): 790-792, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048328

RESUMO

Biological invasions are a main threat to biodiversity. Seebens et al. find that Indigenous Peoples' lands host 30% fewer alien species than other lands. This finding calls for additional examination of the drivers of such difference, from Indigenous Peoples' land management practices to the values that guide relations with nature.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Povos Indígenas , Espécies Introduzidas , Conservação dos Recursos Naturais/métodos , Humanos
15.
Ecol Evol ; 14(6): e11556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932975

RESUMO

In the intricate web of plant-animal interactions, granivore birds can play a dual antagonist-mutualist role as seed predators and dispersers. This study delves into the ecological significance of the house sparrow (Passer domesticus) as seed disperser by endozoochory. A sample of individual droppings and faecal pools were collected from a communal roost in central Spain to examine the presence of seeds. Seed viability was determined using the tetrazolium test. Our findings revealed that around 22% of the analysed droppings contained seeds, contradicting the prevalent notion of house sparrow solely as seed predator. Viability tests demonstrated that 53.9% of the defecated seeds were viable, although it varied between plant species, including those from fleshy-fruited common fig and five species of dry-fruited herbs. This study challenges the traditional perspectives on the ecological role of the house sparrow, and glimpses on their contribution to seed dispersal. Understanding the nuanced roles of granivore species like the house sparrow is crucial for developing holistic conservation and management strategies in urban and agricultural landscapes. Future studies are encouraged to unravel the actual role of this cosmopolitan species as disperser of a likely broad spectrum of wild, cultivated and exotic plants.

16.
Pest Manag Sci ; 80(9): 4156-4162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843468

RESUMO

Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Plantas Geneticamente Modificadas , Zea mays , Zea mays/genética , Plantas Geneticamente Modificadas/genética , África Subsaariana , Animais , Doenças das Plantas/parasitologia , Insetos/genética , Insetos/fisiologia , Plantas Daninhas/genética , Controle de Plantas Daninhas/métodos , Produtos Agrícolas/genética
17.
Chem Biodivers ; : e202400861, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927001

RESUMO

This research aims to create an emulsion formulation utilizing lignin as a carrier and citronella oil for its application as a herbicide. The formulation composition includes lignin solution 55-62 %v/v, Tween 80 25 %w/v, propylene glycol 10 %w/v, and citronella oil 3-10 %w/v. The preparation steps involve preparing the oil phase by mixing tween 80 surfactant, propylene glycol, and citronella oil; preparing the aqueous phase by mixing lignin into distilled water at pH 12 with stirring; mixing the oil phase and the water phase accompanied by stirring at 5000-10000 rpm for 1-5 minutes until a stable solution is formed as a natural herbicide. The application outcomes revealed that the formulation successfully eliminated specific weeds within two to three days at the maximum concentration of 10 %, leaving no detectable herbicide residue after 7 and 15 days of treatment. The result demonstrates how green technology has the capacity to replace herbicides derived from chemicals, especially in the agricultural sector.

18.
Sci Rep ; 14(1): 11173, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750179

RESUMO

Laser weeding may contribute to less dependency on herbicides and soil tillage. Several research and commercial projects are underway to develop robots equipped with lasers to control weeds. Artificial intelligence can be used to locate and identify weed plants, and mirrors can be used to direct a laser beam towards the target to kill it with heat. Unlike chemical and mechanical weed control, laser weeding only exposes a tiny part of the field for treatment. Laser weeding leaves behind only ashes from the burned plants and does not disturb the soil. Therefore, it is an eco-friendly method to control weed seedlings. However, perennial weeds regrow from the belowground parts after the laser destroys the aerial shoots. Depletion of the belowground parts for resources might be possible if the laser continuously kills new shoots, but it may require many laser treatments. We studied how laser could be used to destroy the widespread and aggressive perennial weed Elymus repens after the rhizomes were cut into fragments. Plants were killed with even small dosages of laser energy and stopped regrowing. Generally, the highest efficacy was achieved when the plants from small rhizomes were treated at the 3-leaf stage.


Assuntos
Lasers , Controle de Plantas Daninhas , Controle de Plantas Daninhas/métodos , Elymus/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação
19.
Plants (Basel) ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794386

RESUMO

Straw covering is a protective tillage measure in agricultural production, but there is relatively little research on the allelopathic effects of corn straw on weeds and foxtail millet. This experiment studied the allelopathic effects of corn straw on four weeds (Chenopodium album, Setaria viridis, Echinochloa crus-galli and Amaranthus retroflexus) in foxtail millet fields, and also measured the growth indicators of foxtail millet. The study consisted of Petri dish and field experiments. Five treatments were used in the Petri dish experiment: clear water as control (0 g/L, TCK) and four types of corn straw water extracts. They were, respectively, the stock solution (100 g/L, T1), 10 X dilution (10 g/L, T2), 50 X dilution (2 g/L, T3), and 100 X dilution (1 g/L, T4) of corn straw water extracts. Additionally, seven treatments were set up in the field experiment, consisting of three corn straw covering treatments, with covering amounts of 3000 (Z1), 6000 (Z2) and 12,000 kg/ha (Z3), and four control treatments-one treatment with no corn straw cover (CK) and three treatments involving the use of a black film to create the same shading area as the corn straw covered area, with black film coverage areas of 50% (PZ1), 70% (PZ2), and 100% (PZ3), respectively. The results showed that the corn straw water extract reduced the germination rate of the seeds of the four weeds. The T1 treatment resulted in the allelopathic promotion of C. album growth but the inhibition of S. viridis, E. crus-galli, and A. retroflexus growth. Treatments T2, T3, and T4 all induced the allelopathic promotion of the growth of the four weeds. The order of the effects of the corn straw water extracts on the comprehensive allelopathy index of the four weed seeds was as follows: C. album > S. viridis > A. retroflexus > E. crus-galli. With an increase in the corn straw mulching amount, the density and total coverage of the four weeds showed a gradual downward trend, whereas the plant control effect and fresh weight control effect showed a gradual upward trend. All indices showed the best results under 12,000 kg/ha of mulching and returning to the field. Overall, corn straw coverage significantly impacted the net photosynthetic rate and transpiration rate of foxtail millet and increased the yield of foxtail millet. Under coverages of 6000 and 12,000 kg/ha, the growth of foxtail millet is better. Based on our findings, we recommend a corn straw coverage of 12,000 kg/ha for the allelopathic control of weeds in foxtail millet fields.

20.
Sci Rep ; 14(1): 10159, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698043

RESUMO

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Assuntos
Alelopatia , Bidens , Erigeron , Espécies Introduzidas , Solo , Solo/química , Erigeron/química , Egito , Hidroxibenzoatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...