Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987218

RESUMO

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Assuntos
Plaquetas , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Neurônios Dopaminérgicos , Neuroblastoma , Humanos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Plaquetas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Tretinoína/farmacologia , Fenótipo
2.
Cells ; 12(16)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37626914

RESUMO

The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFß, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Meios de Cultura/farmacologia , Suplementos Nutricionais , Ácido Láctico
3.
Bioengineering (Basel) ; 9(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551011

RESUMO

Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.

4.
Acta Biomater ; 119: 155-168, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130306

RESUMO

Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Camundongos , Músculo Liso Vascular , Miócitos de Músculo Liso , Engenharia Tecidual
5.
Acta Biomater ; 119: 184-196, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166710

RESUMO

Tissue engineered vascular grafts (TEVGs) represent a promising therapeutic option for emergency vascular intervention. Although the application of small-diameter TEVGs using patient-specific primary endothelial cells (ECs) to prevent thrombosis and occlusion prior to implantation could be hindered by the long time course required for in vitro endothelialization, human induced pluripotent stem cells (hiPSCs) provide a robust source to derive immunocompatible ECs (hiPSC-ECs) for immediate TEVG endothelialization. To achieve clinical application, hiPSC-ECs should be derived under culture conditions without the use of animal-derived reagents (xenogeneic-free conditions), to avoid unwanted host immune responses from xenogeneic reagents. However, a completely xenogeneic-free method of hiPSC-EC generation has not previously been established. Herein, we substituted animal-derived reagents used in a standard method of xenogeneic hiPSC-EC differentiation with functional counterparts of human origin. As a result, we generated xenogeneic-free hiPSC-ECs (XF-hiPSC-ECs) with similar marker expression and function to those of human primary ECs. Furthermore, XF-hiPSC-ECs functionally responded to shear stress with typical cell alignment and gene expression. Finally, we successfully endothelialized decellularized human vessels with XF-hiPSC-ECs in a dynamic bioreactor system. In conclusion, we developed xenogeneic-free conditions for generating functional hiPSC-ECs suitable for vascular tissue engineering, which will further move TEVG therapy toward clinical application.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Prótese Vascular , Diferenciação Celular , Células Endoteliais , Humanos , Engenharia Tecidual
6.
Front Cell Dev Biol ; 8: 553444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224943

RESUMO

Mesenchymal stromal cells (MSC) hold great promise for tissue engineering and cell-based therapies due to their multilineage differentiation potential and intrinsic immunomodulatory and trophic activities. Over the past years, increasing evidence has proposed extracellular vesicles (EVs) as mediators of many of the MSC-associated therapeutic features. EVs have emerged as mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. EVs are derived from cell membranes, allowing high biocompatibility to target cells, while their small size makes them ideal candidates to cross biological barriers. Despite the promising potential of EVs for therapeutic applications, robust manufacturing processes that would increase the consistency and scalability of EV production are still lacking. In this work, EVs were produced by MSC isolated from different human tissue sources [bone marrow (BM), adipose tissue (AT), and umbilical cord matrix (UCM)]. A serum-/xeno-free microcarrier-based culture system was implemented in a Vertical-WheelTM bioreactor (VWBR), employing a human platelet lysate culture supplement (UltraGROTM-PURE), toward the scalable production of MSC-derived EVs (MSC-EVs). The morphology and structure of the manufactured EVs were assessed by atomic force microscopy, while EV protein markers were successfully identified in EVs by Western blot, and EV surface charge was maintained relatively constant (between -15.5 ± 1.6 mV and -19.4 ± 1.4 mV), as determined by zeta potential measurements. When compared to traditional culture systems under static conditions (T-flasks), the VWBR system allowed the production of EVs at higher concentration (i.e., EV concentration in the conditioned medium) (5.7-fold increase overall) and productivity (i.e., amount of EVs generated per cell) (3-fold increase overall). BM, AT and UCM MSC cultured in the VWBR system yielded an average of 2.8 ± 0.1 × 1011, 3.1 ± 1.3 × 1011, and 4.1 ± 1.7 × 1011 EV particles (n = 3), respectively, in a 60 mL final volume. This bioreactor system also allowed to obtain a more robust MSC-EV production, regarding their purity, compared to static culture. Overall, we demonstrate that this scalable culture system can robustly manufacture EVs from MSC derived from different tissue sources, toward the development of novel therapeutic products.

7.
Cytotherapy ; 22(12): 762-771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828673

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs). METHODS: MSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs. RESULTS: MSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions. CONCLUSIONS: LPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Imunidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neovascularização Fisiológica , Pâncreas/citologia , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Humanos , Imunomodulação , Interferon gama/metabolismo , Medicina Regenerativa , Linfócitos T/citologia
8.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854428

RESUMO

Transplantation of human cultured limbal epithelial stem/progenitor cells (LESCs) has demonstrated to restore the integrity and functionality of the corneal surface in about 76% of patients with limbal stem cell deficiency. However, there are different protocols for the expansion of LESCs, and many of them use xenogeneic products, being a risk for the patients' health. We compared the culture of limbal explants on the denuded amniotic membrane in the culture medium-supplemental hormone epithelial medium (SHEM)-supplemented with FBS or two differently produced human sera. Cell morphology, cell size, cell growth rate, and the expression level of differentiation and putative stem cell markers were examined. Several bioactive molecules were quantified in the human sera. In a novel approach, we performed a multivariate statistical analysis of data to investigate the culture factors, such as differently expressed molecules of human sera that specifically influence the cell phenotype. Our results showed that limbal cells cultured with human sera grew faster and contained similar amounts of small-sized cells, higher expression of the protein p63α, and lower of cytokeratin K12 than FBS cultures, thus, maintaining the stem/progenitor phenotype of LESCs. Furthermore, the multivariate analysis provided much data to better understand the obtaining of different cell phenotypes as a consequence of the use of different culture methodologies or different culture components.


Assuntos
Meios de Cultura/química , Epitélio Corneano/citologia , Limbo da Córnea/citologia , Soro/química , Células-Tronco/citologia , Adulto , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Células Cultivadas , Epitélio Corneano/metabolismo , Humanos , Queratina-12/metabolismo , Limbo da Córnea/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Células-Tronco/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
9.
Stem Cell Res Ther ; 11(1): 79, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087752

RESUMO

BACKGROUND: Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. METHODS: Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). RESULTS: Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. CONCLUSIONS: These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.


Assuntos
Células da Medula Óssea/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
10.
Cryobiology ; 86: 25-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629948

RESUMO

In this study, we compared three commercially available and two widely used CPAs for their ability of cryopreserving PBMCs. Similar survival (81.0%) and recovery rate (73.7%) were observed among cells using these five CPAs. However, all the cryopreserved PBMCs exhibited a significantly lower survival rate when compared with the fresh samples (94.3%). We further evaluated effector cell subpopulation and tumoricidal activity of PBMC-derived cytokine-induced killing (CIK) cells and natural killing (NK) cells. Similar and high survival (CIK: 88.6%; NK: 87.5%) and recovery (CIK: 99.5%; NK: 99.7%) rates were detected in CIK and NK cells prepared from cryopreserved PBMCs using the five CPAs. The CD3+CD56+ effector percentage (27.3%) of cryopreserved PBMC-derived CIK cells using the five different CPAs and their tumoricidal activities on melanoma CHL-1 cells (45.7%) and bladder cancer cell line T-24 (44.7%) were similar but significantly lower than those of the fresh PBMC-derived controls (effector: 30.7%; CHL-1: 84.2%; T-24: 82.2%). Cryopreserved PBMC-derived NK cells also exhibited similar tumoricidal activities (CHL-1: 73.8%; T-24: 71.9%) but was significantly lower than that of the fresh control group. We were not able to identify a specific CPA that performed superior than others in PBMC cryopreservation.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Células Matadoras Induzidas por Citocinas/imunologia , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Neoplasias da Bexiga Urinária/imunologia , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/citologia , Soluções
11.
Stem Cells Transl Med ; 6(3): 937-948, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28297587

RESUMO

Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)-derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson's disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder- and xenogeneic-free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock-in lines (LMX1A-eGFP and PITX3-eGFP) for in-depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this "next generation" protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno-free vmDA progenitors from LMX1A- and PITX3-eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC-derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937-948.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Mesencéfalo/citologia , Atividade Motora , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Células Cultivadas , Criopreservação , Dopamina/metabolismo , Células Alimentadoras/citologia , Fibroblastos/citologia , Humanos , Camundongos , Doença de Parkinson/patologia , Fenótipo , Ratos
12.
J Tissue Eng Regen Med ; 11(5): 1630-1640, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27444977

RESUMO

Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGROTM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGROTM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGROTM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Plaquetas/química , Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
13.
Tissue Eng Part A ; 23(5-6): 208-222, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27998239

RESUMO

For decades, researchers have been developing a range of promising strategies in bone tissue engineering with the aim of producing a significant clinical benefit over existing therapies. However, a major problem concerns the traditional use of xenogeneic substances for the expansion of cells, which complicates direct clinical transfer. The study's aim was to establish a totally autologous sheep model as a basis for further preclinical studies and future clinical application. Ovine mesenchymal stromal cells (MSC) were cultivated in different concentrations (0%, 2%, 5%, 10%, and 25%) of either autologous serum (AS) or fetal calf serum (FCS). With an increase of serum concentration, enhanced metabolic activity and proliferation could be observed. There were minor differences between MSC cultivated in AS or FCS, comparing gene and protein expression of osteogenic and stem cell markers, morphology, and osteogenic differentiation. MSC implanted subcutaneously in the sheep model, together with a nanostructured bone substitute, either in stable block or moldable putty form, induced similar vascularization and remodeling of the bone substitute irrespective of cultivation of MSC in AS or FCS and osteogenic differentiation. The bone substitute in block form together with MSC proved particularly advantageous in the induction of ectopic bone formation compared to the cell-free control and putty form. It could be demonstrated that AS is suitable for replacement of FCS for cultivation of ovine MSC for bone tissue engineering purposes. Substantial progress has been made in the development of a strictly xenogeneic-free preclinical animal model to bring future clinical application of bone tissue engineering strategies within reach.


Assuntos
Substitutos Ósseos , Proliferação de Células , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Engenharia Tecidual , Animais , Autoenxertos , Células-Tronco Mesenquimais/patologia , Ovinos
14.
J Biotechnol ; 236: 88-109, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27527397

RESUMO

Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Animais , Reatores Biológicos , Células Cultivadas , Humanos , Camundongos
15.
Methods Mol Biol ; 1416: 375-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236684

RESUMO

The therapeutic potential of mesenchymal stem/stromal cells (MSC) has triggered the need for high cell doses in a vast number of clinical applications. This demand requires the development of good manufacturing practices (GMP)-compliant ex vivo expansion protocols that should be effective to deliver a robust and reproducible supply of clinical-grade cells in a safe and cost-effective manner. Controlled stirred-tank bioreactor systems under xenogeneic (xeno)-free culture conditions offer ideal settings to develop and optimize cell manufacturing to meet the standards and needs of human MSC for cellular therapies. Herein we describe two microcarrier-based stirred culture systems using spinner flasks and controlled stirred-tank bioreactors under xeno-free conditions for the efficient ex vivo expansion of human bone marrow and adipose tissue-derived MSC.


Assuntos
Técnicas de Cultura de Células/instrumentação , Manufaturas/normas , Células-Tronco Mesenquimais/citologia , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Fidelidade a Diretrizes , Humanos , Imunofenotipagem
16.
Biotechnol J ; 11(8): 1048-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27168373

RESUMO

Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Reatores Biológicos , Contagem de Células , Diferenciação Celular , Proliferação de Células , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/imunologia , Cordão Umbilical/imunologia
17.
Stem Cells Transl Med ; 5(3): 314-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26838270

RESUMO

Adipose-derived stem cells (ASCs) are being tested in clinical trials related to cell-based regenerative therapies. Although most of the current expansion protocols for ASCs use fetal calf serum (FCS), xenogeneic-free medium supplements are greatly desired. This study aims to compare the effect of FCS, human platelet lysate (hPL), and a fully defined medium on the initiation and maintenance of ASC cultures. ASCs obtained from five donors were cultured in five different media: StemPro, Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% hPL, or α-minimum essential medium (A-MEM) supplemented with 5% hPL, 10% hPL, or 10% FCS. The effect of media on proliferation, colony-forming units (CFUs), attachment, and morphology was assessed along with cell size, granularity, and immunophenotype. StemPro greatly compromised the initiation of ASC cultures, which could not survive more than a few passages. Cells cultured in A-MEM proliferated at a faster rate than in DMEM, and hPL significantly enhanced cell size, granularity, and proliferation compared with FCS. All media except StemPro supported CFUs equally well. Analysis of surface markers revealed higher levels of CD73 and CD105 in FCS-cultured ASCs, whereas increased levels of CD146 were found in hPL-cultured cells. Multiparametric flow cytometric analysis performed after seven passages revealed the existence of four distinct ASC subpopulations, all positive for CD73, CD90, and CD105, which mainly differed by their expression of CD146 and CD271. Analysis of the different subpopulations might represent an important biological measure when assessing different medium formulations for a particular clinical application.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco/citologia , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Plaquetas/citologia , Bovinos , Terapia Baseada em Transplante de Células e Tecidos , Citometria de Fluxo , Humanos , Medicina Regenerativa , Células-Tronco/efeitos dos fármacos
18.
Biotechnol J ; 10(8): 1235-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136376

RESUMO

Human mesenchymal stem/stromal cells (MSC) are promising candidates for cell-based therapies and the development of microcarrier-based cultures in scalable bioreactors with well-defined xenogeneic-free components represent important milestones towards the clinical-scale production of these cells. In this work, we optimized our previously developed xeno-free microcarrier-based system for the scalable expansion of human MSC isolated from bone marrow (BM MSC) and adipose-derived stem/stromal cells (ASC). By adapting the agitation/feeding protocol at the initial cell seeding/cultivation stage in spinner flasks, we were able to maximize cell expansion rate and final cell yield. Maximal cell densities of 3.6 × 10(5) and 1.9 × 10(5) cells/mL were obtained for BM MSC (0.60 ± 0.04 day(-1) ) and ASC (0.9 ± 0.1 day(-1) ) cultures, upon seven and eight days of cultivation, respectively. Ready-to-use microcarriers Synthemax® II and Enhanced Attachment® supported identical expansion performance of BM MSC, turning those effective alternatives to the pre-coated plastic microcarriers used in our xeno-free scalable culture system. Importantly, expanded MSC maintained their immunophenotype and multilineage differentiation potential. Moreover, secretome analysis suggested a priming effect of stirred culture conditions on cytokine production by MSC. This culture system yielded considerable final cell densities that can be scaled-up to controlled large-scale bioreactors allowing a more efficient, safe and cost-effective MSC production for clinical settings.


Assuntos
Tecido Adiposo/citologia , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Humanos , Microtecnologia/métodos
19.
Regen Ther ; 1: 18-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245438

RESUMO

The potential applications of human embryonic stem cells (hESCs) in regenerative medicine and developmental research have made stem cell biology one of the most fascinating and rapidly expanding fields of biomedicine. The first clinical trial of hESCs in humans has begun, and the field of stem cell therapy has just entered a new era. Here, we report seven hESC lines (SEES-1, -2, -3, -4, -5, -6, and -7). Four of them were derived and maintained on irradiated human mesenchymal stem cells (hMSCs) grown in xenogeneic-free defined media and substrate. Xenogeneic-free hMSCs isolated from the subcutaneous tissue of extra fingers from individuals with polydactyly showed appropriate potentials as feeder layers in the pluripotency and growth of hESCs. In this report, we describe a comprehensive characterization of these newly derived SEES cell lines. In addition, we developed a scalable culture system for hESCs having high biological safety by using gamma-irradiated serum replacement and pharmaceutical-grade recombinant basic fibroblast growth factor (bFGF, also known as trafermin). This is first report describing the maintenance of hESC pluripotency using pharmaceutical-grade human recombinant bFGF (trafermin) and gamma-irradiated serum replacement. Our defined medium system provides a path to scalability in Good Manufacturing Practice (GMP) settings for the generation of clinically relevant cell types from pluripotent cells for therapeutic applications.

20.
Biotechnol Bioeng ; 111(6): 1116-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24420557

RESUMO

The large cell doses (>1 × 10(6) cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC production system.


Assuntos
Reatores Biológicos , Proliferação de Células , Células-Tronco Mesenquimais/fisiologia , Células Estromais/fisiologia , Técnicas de Cultura de Células/métodos , Humanos , Imunofenotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...