Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999774

RESUMO

Dysregulation of zinc and zinc transporters families has been associated with the genesis and progression of prostate cancer. The prostate epithelium utilizes two types of zinc transporters, the ZIP (Zrt-, Irt-related Protein) and the ZnTs (Zinc Transporter), to transport zinc from the blood plasma to the gland lumen. ZIP transporters uptake zinc from extracellular space and organelle lumen, while ZnT transporters release zinc outside the cells or to organelle lumen. In prostate cancer, a commonly observed low zinc concentration in prostate tissue has been correlated with downregulations of certain ZIPs (e.g., ZIP1, ZIP2, ZIP3, ZIP14) and upregulations of specific ZnTs (e.g., ZnT1, ZnT9, ZnT10). These alterations may enable cancer cells to adapt to toxic high zinc levels. While zinc supplementation has been suggested as a potential therapy for this type of cancer, studies have yielded inconsistent results because some trials have indicated that zinc supplementation could exacerbate cancer risk. The reason for this discrepancy remains unclear, but given the high molecular and genetic variability present in prostate tumors, it is plausible that some zinc transporters-comprising 14 ZIP and 10 ZnT members-could be dysregulated in others patterns that promote cancer. From this perspective, this review highlights novel dysregulation, such as ZIP-Up/ZnT-Down, observed in prostate cancer cell lines for ZIP4, ZIP8, ZnT2, ZnT4, ZnT5, etc. Additionally, an in silico analysis of an available microarray from mouse models of prostate cancer (Nkx3.1;Pten) predicts similar dysregulation pattern for ZIP4, ZIP8, and ZnT2, which appear in early stages of prostate cancer progression. Furthermore, similar dysregulation patterns are supported by an in silico analysis of RNA-seq data from human cancer tumors available in cBioPortal. We discuss how these dysregulations of zinc transporters could impact zinc supplementation trials, particularly focusing on how the ZIP-Up/ZnT-Down dysregulation through various mechanisms might promote prostate cancer progression.


Assuntos
Proteínas de Transporte de Cátions , Neoplasias da Próstata , Zinco , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Regulação Neoplásica da Expressão Gênica , Suplementos Nutricionais , Próstata/metabolismo
2.
J Nutr Biochem ; 132: 109697, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964724

RESUMO

Long-term alcohol overconsumption impairs intestinal and hepatic structure and function, along with dysregulation of zinc homeostasis. We previously found that zinc-glutathione (Zn-GSH) complex effectively suppressed alcohol-induced liver injury in mice. This study was undertaken to test the hypothesis that Zn-GSH suppresses alcohol-induced liver injury by modulating intestinal zinc transporters. Mice were subjected to long-term ethanol feeding, as per the NIAAA model, with groups receiving either an ethanol diet alone or an ethanol diet supplemented with Zn-GSH. Treatment groups were carefully monitored for alcohol consumption and subjected to a final binge drinking exposure. The results showed that Zn-GSH increased the survival rate and decreased the recovery time from binge drinking-induced drunkenness. Histopathological analyses demonstrated a reduction in liver steatosis and the preservation of intestinal integrity by Zn-GSH. It was observed that Zn-GSH prevented the reduction of Zn and GSH levels while increasing alcohol dehydrogenase and aldehyde dehydrogenase in both liver and intestine. Importantly, the expression and protein abundance of zinc transporters ZnT-1, ZIP-1, ZIP-4, ZIP-6, and ZIP-14, all of which are critically involved in intestinal zinc transport and homeostasis, were significantly increased or preserved by Zn-GSH in response to alcohol exposure. This study thus highlights the critical role of Zn-GSH in maintaining intestinal zinc homeostasis by modulating zinc transporters, thereby preventing alcohol-induced intestinal and hepatic injury.


Assuntos
Etanol , Glutationa , Fígado , Zinco , Animais , Zinco/farmacologia , Zinco/metabolismo , Glutationa/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Proteínas de Transporte/metabolismo , Intestinos/efeitos dos fármacos , Homeostase
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39031082

RESUMO

Recent study showed that zinc (Zn) and amino acid transporters may be involved in enhancing Zn absorption from Zn proteinate with moderate chelation strength (Zn-Prot M) in the duodenum of broilers. However, the specific mechanisms by which Zn-Prot M promotes the above Zn absorption are unknown. Therefore, in this study, 3 experiments were conducted to investigate specific and direct effects of Zn-Prot M and Zn sulfate (ZnS) on Zn absorption and expression of related transporters in primary duodenal epithelial cells of broiler embryos so as to preliminarily address possible mechanisms. In experiment 1, cells were treated with 100 µmol Zn/L as ZnS or Zn-Prot M for 20, 40, 60, 80, 100, or 120 min. Experiment 2 consisted of 3 sub-experiments. In experiment 2A, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 100 or 200 µmol Zn/L as ZnS or Zn-Prot M for 60 min; in experiment 2B, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 200 µmol Zn/L of as the ZnS or Zn-Prot M for 120 min; in experiment 2C, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 or 800 µmol Zn/L as ZnS or Zn-Prot M for 120 min. In experiment 3, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 µmol Zn/L as ZnS or Zn-Prot M for 120 min. The results of experiment 1 indicated that the minimum incubation time for saturable Zn absorption was determined to be 50.83 min using the best fit line. The results in experiment 2 demonstrated that a Zn concentration of 400 µmol/L and an incubation time of 120 min were suitable to increase the absorption of Zn from Zn-Prot M compared to ZnS. In experiment 3, Zn absorption across cell monolayers was significantly increased by Zn addition (P < 0.05), and was significantly greater with Zn-Prot M than with ZnS (P < 0.05). Compared to the control, Zn addition significantly decreased Zn transporter 10 and peptide-transporter 1 mRNA expression levels and increased y + L-type amino transporter 2 (y + LAT2) protein abundance (P < 0.05). Moreover, protein expression levels of zrt/irt-like protein 3 (ZIP3), zrt-irt-like protein 5 (ZIP5), and y + LAT2 were significantly greater for Zn-Prot M than for ZnS (P < 0.05). These findings suggest that Zn-Prot M promote Zn absorption by increasing ZIP3, ZIP5 and y + LAT2 protein expression levels in primary duodenal epithelial cells.


Our previous studies demonstrated that zinc (Zn) proteinate with moderate chelation strength (Zn-Prot M) exhibited the greatest bioavailability compared to the inorganic Zn sulfate (ZnS) and other organic Zn sources with either weak or strong chelation strength in broilers. Our recent study further showed that Zn and amino acid transporters could be potentially involved in promoting the absorption of Zn as Zn-Prot M in the duodenum of broilers. Nevertheless, further in vitro experiments are required to reveal the specific mechanisms by which Zn-Prot M promotes Zn absorption, where it is necessary first to investigate the specific and direct effect of Zn-Prot M on Zn absorption and the expression of Zn and amino acid transporters compared to that of ZnS. Therefore, we performed an in vitro study and found that Zn-Prot M increased Zn absorption and protein expression levels of the zrt­irt-like protein 3 (ZIP3), zrt­irt-like protein 5 (ZIP5), and y + L-type amino transporter 2 (y + LAT2) compared to ZnS, suggesting that ZIP3, ZIP5, and y + LAT2 might be involved in promoting the absorption of Zn from Zn-Prot M in the primary cultured duodenal epithelial cells of broiler embryos.


Assuntos
Sistemas de Transporte de Aminoácidos , Duodeno , Células Epiteliais , Zinco , Animais , Zinco/metabolismo , Duodeno/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Embrião de Galinha , Galinhas , Quelantes/farmacologia , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Sulfato de Zinco/farmacologia , Proteínas de Transporte
4.
J Clin Med ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930029

RESUMO

Background/Objectives: Gestational diabetes (GDM) is a metabolic disorder with altered glucose levels diagnosed in pregnant women. The pathogenesis of GDM is not fully known, but it is thought to be caused by impaired insulin production and insulin resistance induced by diabetogenic factors. The placenta may play an important role in the development of GDM. Glucose transporters (GLUTs) are responsible for the delivery of glucose into the foetal circulation. Placental zinc transporters regulate insulin and glucagon secretion, as well as gluconeogenesis and glycolysis. The aim of this study was to investigate the placental expression of GLUT3, GLUT4, GLUT7 and SLC30A8 in women with GDM. Furthermore, we evaluated whether the expression profiles of these transporters were correlated with clinical parameters. Methods: This study included 26 patients with GDM and 28 patients with normal glucose tolerance (NGT). Results: The placental expression of GLUT3 was significantly reduced in the GDM group, while the placental expression of GLUT4, GLUT7 and SLC30A8 was significantly upregulated in the GDM group. GLUT3 expression correlated significantly with body mass index (BMI) increase during pregnancy and body mass increase during pregnancy, while GLUT4 expression correlated negatively with BMI at birth. Conclusions: These results suggest the involvement of GLUT3 and GLUT4, GLUT7 and SLC30A8 in the pathogenesis of GDM.

5.
Free Radic Biol Med ; 222: 493-504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944212

RESUMO

Due to an unexpected activation of different zinc (Zn) transporters in a recent prospective clinical study, we have revisited the role of Zn homeostasis and the activation of matrix metalloproteinases (MMPs) in skeletal muscle exposed to the intensive care unit (ICU) condition (immobilization and mechanical ventilation). ICU patients exposed to 12 days ICU condition were followed longitudinally with six repeated muscle biopsies while they showed a progressive preferential myosin loss, i.e., the hallmark of Critical Illness Myopathy (CIM), in parallel with the activation of Zn-transporters. In this study, we have revisited the expression of Zn-transporters and the activation of MMPs in clinical as well as in experimental studies using an established ICU model. MMPs are a group Zn-dependent endopeptidases which do not only target and cleave extracellular proteins but also intracellular proteins including multiple sarcomeric proteins. MMP-9 is of specific interest since the hallmark of CIM, the preferential myosin loss, has also been reported in dilated cardiomyopathy and coupled to MMP-9 activation. Transcriptional activation of Zn-transporters was observed in both clinical and experimental studies as well as the activation of MMPs, in particular MMP-9, in various limb and respiratory muscles in response to long-term exposure to the ICU condition. The activation of Zn-transporters was paralleled by increased Zn levels in skeletal muscle which in turn showed a negative linear correlation with the preferential myosin loss associated with CIM, offering a potential intervention strategy. Thus, activation of Zn-transporters, increased intramuscular Zn levels, and activation of the Zn-dependent MMPs are forwarded as a probable mechanism involved in CIM pathophysiology. These effects were confirmed in different rat strains subjected to a model of CIM and exacerbated by old age. This is of specific interest since old age and muscle wasting are the two factors most strongly associated with ICU mortality.


Assuntos
Estado Terminal , Doenças Musculares , Proteólise , Zinco , Animais , Humanos , Ratos , Unidades de Terapia Intensiva , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Zinco/metabolismo
6.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195041, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38740364

RESUMO

The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.


Assuntos
Peixes-Gato , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Regiões Promotoras Genéticas , Zinco , Animais , Zinco/metabolismo , Peixes-Gato/genética , Peixes-Gato/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transcrição Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fator MTF-1 de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Free Radic Biol Med ; 221: 188-202, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38750767

RESUMO

Alterations in zinc transporter expression in response to zinc loss protect cardiac cells from ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanisms how cardiac cells sense zinc loss remains unclear. Here, we found that zinc deficiency induced ubiquitination and degradation of the protein inhibitor of activated STAT3 (PIAS3), which can alleviate myocardial I/R injury by activating STAT3 to promote the expression of ZIP family zinc transporter genes. The RING finger domain within PIAS3 is vital for PIAS3 degradation, as PIAS3-dRing (missing the RING domain) and PIAS3-Mut (zinc-binding site mutation) were resistant to degradation in the setting of zinc deficiency. Meanwhile, the RING finger domain within PIAS3 is critical for the inhibition of STAT3 activation. Moreover, PIAS3 knockdown increased cardiac Zn2+ levels and reduced myocardial infarction in mouse hearts subjected to I/R, whereas wild-type PIAS3 overexpression, but not PIAS3-Mut, reduced cardiac Zn2+ levels, and exacerbated myocardial infarction. These findings elucidate a unique mechanism of zinc sensing, showing that fast degradation of the zinc-binding regulatory protein PIAS3 during zinc deficiency can correct zinc dyshomeostasis and alleviate reperfusion injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteínas Inibidoras de STAT Ativados , Fator de Transcrição STAT3 , Ubiquitinação , Zinco , Animais , Zinco/metabolismo , Zinco/deficiência , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
8.
J Trace Elem Med Biol ; 85: 127473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795413

RESUMO

INTRODUCTION: Zinc (Zn) deficiency has been described not only on general human health but also within the sports context -as negatively affecting performance-. Thus, Zn status assessment is of great interest for athletes, especially in order to correct deficiency states of this mineral. OBJECTIVE: The overall objective of this work was to assess Zn status in professional handball players during the competitive period (through plasma levels, dietary intake and gene expression of the Zn transporters), as well as to determine the effect of Zn supplementation. METHODS: A total of twenty-two participants were recruited, -twelve belonged to the Control Group (CG) and ten male handball players comprised the experimental group (ATH-G)-, being monitored over a 2-month period with 2 evaluation moments: baseline (i.e., initial conditions) and follow-up (i.e., after 8 weeks of training and competition). Zn intake, plasma Zn levels, and gene expression of Zn transporters were obtained. RESULTS: Plasma Zn levels were higher in ATH-G than in CG at the end of Zn intervention (p ≤ 0.010). Moreover, differences in the gene expression profile of Zn transporters were observed in ATH-G -with the down-regulation of several Zn transporters-, compared to the CG at baseline (p ≤ 0.05). Likewise, differences in the Zn transporters expression were observed in ATH-G at 8 weeks (all, p ≤ 0.001) -with ZnT2, ZnT5, ZIP3, ZIP5, ZIP11, ZIP13 and ZIP14 transporters being up-regulated-. CONCLUSION: Handball players seemed to have different nutritional needs for Zn, with differences in the gene expression of Zn transporters compared to controls. Zn intervention in our athletes may have influenced the expression of Zn transporters, indicating a potential increase in Zn transporters expression to mobilize Zn at the cellular level at 8 weeks of Zn intervention.


Assuntos
Atletas , Suplementos Nutricionais , Zinco , Humanos , Masculino , Zinco/sangue , Zinco/metabolismo , Adulto Jovem , Adulto , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Esportes
9.
Theriogenology ; 221: 18-24, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521006

RESUMO

Zinc (Zn) plays essential roles in numerous cellular processes. However, there is limited understanding of Zn homeostasis within the bovine reproductive system. This study investigated the influence of estradiol (E2) and progesterone (P4) on Zn transporter expression and intracellular free Zn levels in bovine oviduct epithelial cells (BOEC). For this purpose, cells were harvested from slaughtered cows and cultured in vitro. Intracellular Zn concentrations were measured using FluoZin-3AM staining, while real-time polymerase chain reaction assessed Zn transporter gene expression and quantification. Overall, our results confirmed the gene expression of all the evaluated Zn transporters (ZIP6, ZIP8, ZIP14, ZnT3, ZnT7 and ZnT9), denoted and the active role of E2 and P4 in intracellular Zn regulation. Our findings suggest an interaction between Zn, E2 and P4.


Assuntos
Proteínas de Transporte , Progesterona , Zinco , Feminino , Bovinos , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Oviductos/metabolismo , Células Epiteliais/metabolismo , Estrogênios/farmacologia
10.
Biol Trace Elem Res ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438601

RESUMO

Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.

11.
J Fungi (Basel) ; 10(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392790

RESUMO

The survival of pathogenic fungi in the host after invasion depends on their ability to obtain nutrients, which include the transition metal zinc. This essential micronutrient is required to maintain the structure and function of various proteins and, therefore, plays a critical role in various biological processes. The host's nutritional immunity limits the availability of zinc to pathogenic fungi mainly by the action of calprotectin, a component of neutrophil extracellular traps. Here we investigated the adaptive responses of Fonsecaea pedrosoi to zinc-limiting conditions. This black fungus is the main etiological agent of chromoblastomycosis, a chronic neglected tropical disease that affects subcutaneous tissues. Following exposure to a zinc-limited environment, F. pedrosoi induces a high-affinity zinc uptake machinery, composed of zinc transporters and the zincophore Pra1. A proteomic approach was used to define proteins regulated by zinc deprivation. Cell wall remodeling, changes in neutral lipids homeostasis, and activation of the antioxidant system were the main strategies for survival in the hostile environment. Furthermore, the downregulation of enzymes required for sulfate assimilation was evident. Together, the adaptive responses allow fungal growth and development and reveals molecules that may be related to fungal persistence in the host.

12.
Biol Trace Elem Res ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319549

RESUMO

The aim of this study was to evaluate the relationship between biomarkers of chronic inflammation, insulin resistance, and zinc transporter ZnT1 expression in human visceral adipose tissue. Visceral adipose tissue obtained from 47 adults undergoing laparoscopic surgery for cholecystectomy was used to analyze ZnT1 mRNA expression by RT-qPCR. ZnT1 mRNA levels were compared between subjects with normal weight, overweight, and obesity. A significantly lower ZnT1 expression was observed in overweight and obesity compared with normal-weight subjects (p = 0.0016). Moreover, subjects with normal weight had significantly higher serum zinc concentration (97.7 ± 13.1 mg/L) than subjects with overweight (87.0 ± 12.8 mg/L) and obesity (83.1 ± 6.6 mg/L) (p = 0.002). Pearson test showed a positive correlation between serum zinc concentrations and ZnT1 mRNA expression in visceral adipose tissue (r = 0.323; p = 0.031) and a negative correlation with body mass index (r = - 0.358; p = 0.013). A linear regression model was used to analyze the associations between ZnT1 mRNA expression and serum zinc levels, insulin resistance (HOMA2-IR), serum adipokines (leptin and adiponectin), and serum inflammation biomarkers (tumor necrosis factor alpha, interleukin-6, and C-reactive protein). Interestingly, leptin concentrations were negatively associated with ZnT1 mRNA expression (p = 0.012); however, no significant associations were found for the rest of the analyzed variables. Future research is needed to analyze the causality of negative association between ZntT1 expression in visceral adipose tissue and leptin.

13.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339129

RESUMO

Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.


Assuntos
Cádmio , Neoplasias , Feminino , Humanos , Animais , Camundongos , Cádmio/toxicidade , Cádmio/metabolismo , Carcinogênese , Zinco , Transformação Celular Neoplásica , Ferro , Neoplasias/induzido quimicamente
14.
Proc Natl Acad Sci U S A ; 121(7): e2307143121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330011

RESUMO

Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lisossomos/metabolismo , Organelas/metabolismo , Homeostase , Zinco/metabolismo
15.
J Nutr Biochem ; 123: 109482, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839758

RESUMO

Acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) are both hematological malignancies characterized by genetic alterations leading to the formation of oncofusion proteins. The classical chromosomal aberrations in APL and CML result in the PML-RARα and BCR-ABL1 oncofusion proteins, respectively. Interestingly, our flow cytometric analyses revealed elevated free intracellular zinc levels in various leukemia cells, which may play a role in stabilizing oncofusion proteins in leukemia and thus support cell proliferation and malignancy. Long-term zinc deficiency resulted in the degradation of PML-RARα in NB4 cells (APL cell line) and of BCR-ABL1 in K562 cells (CML cell line). This degradation may be explained by increased caspase 3 activity observed in zinc deficient cells, whereas zinc reconstitution normalized the caspase 3 activity and abolished zinc deficiency-induced oncofusion protein degradation. In NB4 cells, fluorescence microscopic images further indicated enlarged and enriched lysosomes during zinc deficiency, suggesting increased rates of autophagy. Moreover, NB4 cells exhibited increased expression of the zinc transporters ZIP2, ZIP10 and ZnT3 during zinc deficiency and revealed excessive accumulation of zinc in contrast to healthy peripheral blood mononuclear cells (PBMCs), when zinc was abundantly available extracellularly. Our results highlight the importance of altered zinc homeostasis for some characteristics in leukemia cells, uncover potential pathways underlying the effects of zinc deficiency in leukemia cells, and provide potential alternative strategies by which oncofusion proteins can be degraded.


Assuntos
Leucemia Promielocítica Aguda , Zinco , Humanos , Zinco/farmacologia , Caspase 3 , Leucócitos Mononucleares , Diferenciação Celular , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Tretinoína/farmacologia
16.
Pharmacol Res ; 199: 107039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123108

RESUMO

Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.


Assuntos
Proteínas de Transporte de Cátions , Doenças Neurodegenerativas , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Progressão da Doença , Homeostase , Zinco/metabolismo
17.
Biochem Genet ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091184

RESUMO

Intracellular free Zn2+ ([Zn2+]i) is less than 1-nM in cardiomyocytes and its regulation is performed with Zn2+-transporters. However, the roles of Zn2+-transporters in cardiomyocytes are not defined exactly yet. Here, we aimed to examine the role of an overexpression and subcellular localization of a ZnT6 in insulin-resistance mimic H9c2 cardiomyoblasts (IR-cells; 50-µM palmitic acid for 24-h incubation). We used both IR-cells and ZnT6-overexpressed (ZnT6OE) cells in comparison to those of H9c2 cells (CON-cells). The IR-cells have higher ZnT6-protein levels than CON-cells while this level was similar to those of ZnT6OE-cells. The [Zn2+]i in IR-cells was increased significantly and mitochondrial localization of ZnT6 was demonstrated in these cells by using confocal microscopy visualization. Furthermore, electron microscopy analysis demonstrated abnormal morphological appearance in both IR-cells and ZnT6OE-cells characterized by irregular mitochondrion cristae and condensed and dilated cisterna in the sarcoplasmic reticulum. Mitochondria were similarly depolarized in both IR-cells and ZnT6OE-cells. The protein expression level of a mitofusin protein MFN2 in the IR-cells was decreased, significantly, whereas, it was found significantly upregulated in both ZnT6-OE-cells and IR-incubated ZnT6OE-cells, which demonstrates the role of ZnT6-overexpression but not IR. Additionally, the total protein level of a mitochondrial fission protein, dynamin-related protein 1, DRP1 was found to be increased over 1.5-fold in IR-cells while this increase was found to be higher in the ZnT6OE-cells than those of IR-cells, demonstrating an additional effect on IR-increase. ZnT6-overexpression induced also significant increases in K-acetylation, trimethylation of histone H3 lysine27, and mono-methylation of histone H3 lysine36, in a similar manner to those of IR-cells. Overall, our data point out an important contribution of ZnT6-overexpression to IR-induced cellular changes, such as alteration in mitochondria function and activation of epigenetic modifications.

18.
Front Physiol ; 14: 1258540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822680

RESUMO

The chronic exposure of humans to the toxic metal cadmium (Cd), either occupational or from food and air, causes various diseases, including neurodegenerative conditions, dysfunction of vital organs, and cancer. While the toxicology of Cd and its effect on the homeostasis of biologically relevant elements is increasingly recognized, the spatial distribution of Cd and other elements in Cd toxicity-caused diseases is still poorly understood. Here, we use Caenorhabditis elegans as a non-mammalian multicellular model system to determine the distribution of Cd at the tissue and cellular resolution and its effect on the internal levels and the distribution of biologically relevant elements. Using inductively coupled plasma-mass spectrophotometry (ICP-MS), we show that exposure of worms to Cd not only led to its internal accumulation but also significantly altered the C. elegans ionome. Specifically, Cd treatment was associated with increased levels of toxic elements such as arsenic (As) and rubidium (Rb) and a decreased accumulation of essential elements such as zinc (Zn), copper (Cu), manganese (Mn), calcium (Ca), cobalt (Co) and, depending on the Cd-concentration used in the assay, iron (Fe). We regarded these changes as an ionomic signature of Cd toxicity in C. elegans. We also show that supplementing nematode growth medium with Zn but not Cu, rescues Cd toxicity and that mutant worms lacking Zn transporters CDF-1 or SUR-7, or both are more sensitive to Cd toxicity. Finally, using synchrotron X-Ray fluorescence Microscopy (XRF), we showed that Cd significantly alters the spatial distribution of mineral elements. The effect of Cd on the distribution of Fe was particularly striking: while Fe was evenly distributed in intestinal cells of worms grown without Cd, in the presence of Cd, Fe, and Cd co-localized in punctum-like structures in the intestinal cells. Together, this study advances our understanding of the effect of Cd on the accumulation and distribution of biologically relevant elements. Considering that C. elegans possesses the principal tissues and cell types as humans, our data may have important implications for future therapeutic developments aiming to alleviate Cd-related pathologies in humans.

19.
J Agric Food Chem ; 71(31): 12094-12104, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493257

RESUMO

Sucrose emerges as a metal-ion chelating agent with excellent stability that may increase metal-ion absorption. This study aimed to characterize the structure of zinc-sucrose complex and investigate its ability to promote zinc absorption in Caco-2 monolayer cells and mice. Based on the results of the inductively coupled plasma emission spectrometer (ICP-ES), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FT-IR), it can be inferred that zinc and sucrose were chelated at a 1:1 ratio, with the hydroxyl groups playing a significant role. The Caco-2 monolayer cell model revealed that zinc-sucrose complex increased the amount of zinc uptake, retention, and transport in a dose- and time-dependent manner. Through the upregulation of genes and proteins for ZIP4, MT1, and DMT1, treatment with zinc-sucrose complex improved the proportion of absorbed zinc utilized for transport compared to ZnCl2 (26.21 ± 4.96 versus 8.50 ± 1.51%). Pharmacokinetic analysis of mice confirmed the zinc absorption-promoting effect of zinc-sucrose complex, as indicated by the considerably higher serum zinc level (4.16 ± 0.53 versus 2.56 ± 0.45 mg/L) and intestinal ZIP4, MT1, and DMT1 gene expression than ZnCl2. Further treatment of different zinc channel inhibitors and CETSA demonstrated the direct interaction of zinc-sucrose complex with ZIP4 protein and ZIP4-mediated cellular transport of zinc-sucrose complex. These findings provide a novel insight into the zinc absorption-promoting mechanism of zinc-sucrose complex, which could be used as an ingredient in functional foods to treat zinc deficiency.


Assuntos
Quelantes , Zinco , Humanos , Camundongos , Animais , Zinco/metabolismo , Células CACO-2 , Espectroscopia de Infravermelho com Transformada de Fourier , Regulação para Cima , Quelantes/farmacologia
20.
Metallomics ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463796

RESUMO

As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota comprises hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based homology searches revealed that high-affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.


Assuntos
Lactobacillaceae , Zinco , Humanos , Lactobacillaceae/metabolismo , Zinco/metabolismo , Metais/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...