Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831060

RESUMO

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Assuntos
Antioxidantes , Carbono , Colorimetria , Cobre , Nitrogênio , Nitrogênio/química , Colorimetria/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análise , Cobre/química , Cobalto/química , Peróxido de Hidrogênio/química , Humanos , Catálise , Limite de Detecção , Glutationa/química , Glutationa/sangue , Dopamina/sangue , Dopamina/análise , Dopamina/química , Benzidinas/química , Polifenóis/química , Polifenóis/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Ácido Ascórbico/análise , Oxirredução , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Cisteína/química , Cisteína/sangue
2.
Int J Nanomedicine ; 19: 5297-5316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859955

RESUMO

Propose: Oxyberberine (OBB), one of the main metabolites of berberine derived from intestinal and erythrocyte metabolism, exhibits appreciable anti-hyperuricemic activity. However, the low water solubility and poor plasma concentration-effect relationship of OBB hamper its development and utilization. Therefore, an OBB-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) supersaturated drug delivery system (SDDS) was prepared and characterized in this work. Methods: OBB-HP-ß-CD SDDS was prepared using the ultrasonic-solvent evaporation method and characterized. Additionally, the in vitro and in vivo release experiments were conducted to assess the release kinetics of OBB-HP-ß-CD SDDS. Subsequently, the therapeutic efficacy of OBB-HP-ß-CD SDDS on hyperuricemia (HUA) was investigated by means of histopathological examination and evaluation of relevant biomarkers. Results: The results of FT-IR, DSC, PXRD, NMR and molecular modeling showed that the crystallized form of OBB was transformed into an amorphous OBB-HP-ß-CD complex. Dynamic light scattering indicated that this system was relatively stable and maintained by formation of nanoaggregates with an average diameter of 23 nm. The dissolution rate of OBB-HP-ß-CD SDDS was about 5 times higher than that of OBB raw material. Furthermore, the AUC0-t of OBB-HP-ß-CD SDDS (10.882 µg/mL*h) was significantly higher than that of the raw OBB counterpart (0.701 µg/mL*h). The oral relative bioavailability of OBB-HP-ß-CD SDDS was also enhanced by 16 times compared to that of the raw material. Finally, in vivo pharmacodynamic assay showed the anti-hyperuricemic potency of OBB-HP-ß-CD SDDS was approximately 5-10 times higher than that of OBB raw material. Conclusion: Based on our findings above, OBB-HP-ß-CD SDDS proved to be an excellent drug delivery system for increasing the solubility, dissolution, bioavailability, and anti-hyperuricemic potency of OBB.


Assuntos
Berberina , Animais , Berberina/farmacocinética , Berberina/química , Berberina/administração & dosagem , Berberina/farmacologia , Masculino , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Hiperuricemia/tratamento farmacológico , Hiperuricemia/sangue , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Liberação Controlada de Fármacos , Tamanho da Partícula , Disponibilidade Biológica , Ácido Úrico/química , Ácido Úrico/sangue
3.
Int J Nanomedicine ; 19: 5139-5156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859954

RESUMO

Introduction: Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods: HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results: Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion: HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.


Assuntos
Derivados de Hidroxietil Amido , Hiperuricemia , Luteolina , Nanopartículas , Animais , Nanopartículas/química , Derivados de Hidroxietil Amido/química , Derivados de Hidroxietil Amido/farmacocinética , Derivados de Hidroxietil Amido/administração & dosagem , Derivados de Hidroxietil Amido/farmacologia , Luteolina/farmacocinética , Luteolina/farmacologia , Luteolina/química , Luteolina/administração & dosagem , Camundongos , Células CACO-2 , Hiperuricemia/tratamento farmacológico , Hiperuricemia/sangue , Humanos , Masculino , Tamanho da Partícula , Modelos Animais de Doenças , Solubilidade , Ácido Úrico/sangue , Ácido Úrico/química , Disponibilidade Biológica , Administração Oral , Estabilidade de Medicamentos
4.
Nat Commun ; 15(1): 5039, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866775

RESUMO

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.


Assuntos
Apigenina , Microscopia Crioeletrônica , Proteínas Facilitadoras de Transporte de Glucose , Ácido Úrico , Humanos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/química , Ácido Úrico/metabolismo , Ácido Úrico/química , Apigenina/farmacologia , Apigenina/química , Sítios de Ligação , Ligação Proteica , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Modelos Moleculares , Gota/tratamento farmacológico , Gota/metabolismo , Células HEK293
5.
ACS Nano ; 18(21): 13794-13807, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741414

RESUMO

Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.


Assuntos
Cristalização , Hidrogéis , Simulação de Dinâmica Molecular , Nanopartículas , Ácido Úrico , Ácido Úrico/química , Hidrogéis/química , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Tamanho da Partícula , Íons/química , Propriedades de Superfície
6.
Talanta ; 276: 126247, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759358

RESUMO

This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 µM with a limit of detection and quantification of 0.5 µM and 1.5 µM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.


Assuntos
Bentonita , Carbono , Cisteína , Dopamina , Técnicas Eletroquímicas , Eletrodos , Dopamina/sangue , Dopamina/análise , Dopamina/química , Cisteína/química , Cisteína/análise , Cisteína/sangue , Carbono/química , Bentonita/química , Técnicas Eletroquímicas/métodos , Teoria Quântica , Oxirredução , Limite de Detecção , Humanos , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise
7.
Anal Chem ; 96(21): 8630-8640, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722183

RESUMO

Development of reliable methods for the detection of potential biomarkers is of the utmost importance for an early diagnosis of critical diseases and disorders. In this study, a novel lanthanide-functionalized carbon dot-based fluorescent probe Zn-CD@Eu is reported for the ratiometric detection of dipicolinic acid (DPA) and uric acid (UA). The Zn-CD@Eu nanoprobe was obtained from a simple room-temperature reaction of zinc-doped carbon dots (Zn-CD) and the EDTA-Eu lanthanide complex. Under optimal conditions, a good linear response was obtained for DPA in two concentration ranges of 0-55 and 55-100 µM with a limit of detection of 0.53 and 2.2 µM respectively, which is significantly below the infectious dosage of anthrax (∼55 µM). Furthermore, the Zn-CD@Eu/DPA system was employed for the detection of UA with a detection limit of 0.36 µM in the linear range of 0-100 µM. The fluorescent probe was successfully implemented for determining DPA and UA in human blood serum, sweat, and natural water bodies with considerable recovery rates. In addition, the potential of the nanoprobe for ex vivo visualization of UA was demonstrated in fruit fly (Drosophila melanogaster) as a model organism.


Assuntos
Corantes Fluorescentes , Ácidos Picolínicos , Ácido Úrico , Zinco , Corantes Fluorescentes/química , Ácidos Picolínicos/análise , Ácidos Picolínicos/química , Ácido Úrico/análise , Ácido Úrico/química , Humanos , Zinco/química , Zinco/análise , Animais , Európio/química , Pontos Quânticos/química , Cádmio/análise , Cádmio/química , Carbono/química , Limite de Detecção , Imagem Óptica , Drosophila melanogaster
8.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38742828

RESUMO

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Assuntos
Hiperuricemia , Compostos de Manganês , Óxidos , Urato Oxidase , Hiperuricemia/tratamento farmacológico , Urato Oxidase/química , Urato Oxidase/uso terapêutico , Urato Oxidase/metabolismo , Óxidos/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Animais , Catálise , Ácido Úrico/química , Camundongos
9.
Anal Sci ; 40(5): 951-958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598048

RESUMO

Daily monitoring of serum uric acid levels is very important to provide appropriate treatment according to the constitution and lifestyle of individual hyperuricemic patients. We have developed a suspension-based assay to measure uric acid by adding a sample solution to the suspension containing micro-sized particles immobilized on uricase and horseradish peroxidase (HRP). In the proposed method, the mediator reaction of uricase, HRP, and uric acid produces resorufin from Amplex red. This resorufin is adsorbed onto enzyme-immobilized micro-sized particles simultaneously with its production, resulting in the red color of the micro-sized particles. The concentration of resorufin on the small surface area of the microscopic particles achieves a colorimetric analysis of uric acid with superior visibility. In addition, ethanol-induced desorption of resorufin allowed quantitative measurement of uric acid using a 96-well fluorescent microplate reader. The limit of detection (3σ) and RSD (n = 3) were estimated to be 2.2 × 10-2 µg/mL and ≤ 12.1%, respectively. This approach could also be applied to a portable fluorometer.


Assuntos
Colorimetria , Enzimas Imobilizadas , Fluorometria , Peroxidase do Rábano Silvestre , Urato Oxidase , Ácido Úrico , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Urato Oxidase/química , Urato Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Tamanho da Partícula , Humanos , Suspensões , Oxazinas/química
10.
Anal Methods ; 16(16): 2496-2504, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38578053

RESUMO

This work describes an electrochemical sensor for the fast noninvasive detection of uric acid (UA) in saliva. The sensing material was based on a cobalt-containing Prussian blue analogue (Na2-xCo[Fe(CN)6]1-y, PCF). By optimizing the ratio of Co and Fe as 1.5 : 1 in PCF (PCF1.5,0), particles with a regular nanocubic morphology were formed. The calcination of PCF1.5,0 produced a carbon-coated CoFe alloy (CCF1.5), which possessed abundant defects and achieved an excellent electrochemical performance. Subsequently, CCF1.5 was modified on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical sensor, CCF1.5/SPCE, which showed a sensitive and selective response toward salivary UA owing to its good conductivity, sufficient surface active sites and efficient catalytic activity. The determination of UA in artificial saliva achieved the wide linear range of 40 nM-30 µM and the low limit of detection (LOD) of 15.3 nM (3σ/s of 3). The performances of the sensor including its reproducibility, stability and selectivity were estimated to be satisfactory. The content of UA in human saliva was determined and the recovery was in the range of 98-107% and the total RSD was 4.14%. The results confirmed the reliability of CCF1.5/SPCE for application in noninvasive detection.


Assuntos
Ligas , Carbono , Cobalto , Técnicas Eletroquímicas , Ferrocianetos , Ácido Úrico , Ácido Úrico/química , Ácido Úrico/análise , Ferrocianetos/química , Cobalto/química , Carbono/química , Humanos , Técnicas Eletroquímicas/métodos , Ligas/química , Ferro/química , Limite de Detecção , Nanopartículas Metálicas/química , Saliva/química , Reprodutibilidade dos Testes , Eletrodos
11.
Colloids Surf B Biointerfaces ; 238: 113913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608463

RESUMO

A gout attack could be viewed as a nucleation event. Many reports have shown that the typical molecular structure of crystallization inhibitors usually contains carboxyl and hydroxyl groups, which could interact with solute molecules through hydrogen bonding, thereby suppressing the nucleation and growth of crystals. Since 1923, l-lactic acid (LA), a molecule with structural features of inhibitors, has been speculated to be a trigger for acute gout because metabolized LA temporarily reduces uric acid excretion and leads to a slow increase in serum uric acid concentration. However, many cases of gout presumably triggered by elevated lactate in a very short period of 4 h are often inexplicable. Here, we present the unexpected result that LA has a significant "opposite effect" on the nucleation and growth of gouty pathological crystals, which is that as the concentration of the additive LA increases, the nucleation and growth of the crystals is suppressed and then facilitated. This approach may help our clarifying the long-standing "misunderstandings" and further understanding the association between metabolized LA and increased risk of gout attacks. Finally, a novel mechanism called "tailed-made occupancy (TMO)" was used to explain the nucleation and crystallization effects of LA on sodium urate monohydrate (MSUM).


Assuntos
Cristalização , Gota , Ácido Láctico , Ácido Úrico , Gota/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Humanos , Ácido Úrico/química , Ácido Úrico/metabolismo
12.
J Colloid Interface Sci ; 667: 450-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643742

RESUMO

Single-atom catalysts (SACs) have attracted extensive attention in the field of catalysis due to their excellent catalytic ability and enhanced atomic utilization, but the multi-mode single-atom nanozymes for biosensors remain a challenging issue. In this work, iron-doped carbon dots (Fe CDs) were loaded onto the edges and pores of Mo SACs with nanoflower morphology; accordingly, a composite material Fe CDs/Mo SACs was prepared successfully, which improves the catalytic performance and develops a fluorescence mode without changing the original morphology. The steady-state kinetic data indicates that the material prepared have better affinity for substrates and faster reaction rates under optimized conditions. The specific kinetic parameters Km and Vmax were calculated as 0.39 mM and 7.502×10-7 M·s-1 respectively. The excellent peroxidase-like activity of Fe CDs/Mo SACs allows H2O2 to decompose into •OH, which in turn oxidizes colorless o-phenylenediamine (OPD) to yellow 2,3-diaminophenazine (DAP). At the same time, the fluorescence signal of Fe CDs/Mo SACs quenches obviously by DAP at 460 nm through internal filtration effect (IFE), while the characteristic fluorescence response of DAP gradually increases at 590 nm. Based on this sensing mechanism, a sensitive and accurate dual-mode (colorimetric and ratiometric fluorescent) sensor was constructed to detect H2O2 and uric acid, and the rate of recovery and linearity were acceptable for the detection of UA in human serum and urine samples. This method provides a new strategy for rapid and sensitive detection of UA, and also broadens the development of SACs in the field of biosensors.


Assuntos
Carbono , Peróxido de Hidrogênio , Ferro , Molibdênio , Pontos Quânticos , Ácido Úrico , Ácido Úrico/análise , Ácido Úrico/urina , Ácido Úrico/sangue , Ácido Úrico/química , Molibdênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Carbono/química , Ferro/química , Pontos Quânticos/química , Catálise , Humanos , Técnicas Biossensoriais , Limite de Detecção , Tamanho da Partícula , Nanoestruturas/química , Propriedades de Superfície , Fenilenodiaminas/química
13.
Am J Biol Anthropol ; 184(3): e24938, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623788

RESUMO

OBJECTIVES: This research aimed to replicate the Swinson, D., Snaith, J., Buckberry, J., & Brickley, M. (2010). High performance liquid chromatography (HPLC) in the investigation of gout in paleopathology. International Journal of Osteoarchaeology, 20, 135-143. https://doi.org/10.1002/oa.1009 method for detecting uric acid in archeological human remains to investigate gout in past populations and to improve the original High Performance Liquid Chromatography-ultraviolet (HPLC-UV) method by using HPLC-mass spectrometry (HPLC-MS), a more sensitive, compound-specific detection method. MATERIALS AND METHODS: We used reference samples of uric acid to create a dilution series to assess the limits of quantification and detection. Samples from individuals with and without gout lesions were taken from foot bones and ribs from the English cemeteries of Tanyard, Hickleton, Gloucester, and Lincoln. RESULTS: We could not replicate the results of Swinson and colleagues using HPLC-UV. Tests using a dilution series of uric acid showed HPLC-MS was approximately 100× more sensitive than HPLC-UV, with the additional benefit of being compound specific. A newly developed hydrophilic interaction chromatography (HILIC) method improved retention characteristics. Fourteen samples from eight individuals, five with skeletal lesions consistent with gout, were analyzed with the final method. None showed evidence of uric acid despite the newly developed method's improved sensitivity and specificity. DISCUSSION: The lack of detectable uric acid extracted from these samples suggests that (1) urate crystals were not present in any of the bone samples, regardless of gout status; (2) urate crystals did not survive these specific archeological conditions; or (3) the concentration of uric acid in our bone extracts was low, and thus larger samples would be required.


Assuntos
Gota , Ácido Úrico , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Ácido Úrico/análise , Ácido Úrico/química , Gota/diagnóstico , Restos Mortais/química , Espectrometria de Massas/métodos
14.
STAR Protoc ; 5(2): 103030, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38678566

RESUMO

Gout is caused by the deposition of monosodium urate crystals (MSUc) in the joints, triggering a unique inflammatory and metabolic response in macrophages. Here, we present a protocol to generate MSUc for in vitro and in vivo studies in mouse and human cells. We describe steps for dissolving uric acid followed by crystallizing, purifying, evaluating, and analyzing MSUc. We then detail procedures for stimulating human/mouse-derived macrophages and determining endotoxin levels in MSUc preparation.


Assuntos
Cristalização , Gota , Macrófagos , Ácido Úrico , Ácido Úrico/metabolismo , Ácido Úrico/química , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Gota/metabolismo
15.
Food Chem ; 448: 139076, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537545

RESUMO

One of the main reasons for hyperuricemia is high purine intake. The primary strategy for treating hyperuricemia is blocking the purine metabolism enzyme. However, by binding the purine bases directly, we suggested a unique therapeutic strategy that might interfere with purine metabolism. There have been numerous reports of extensive interactions between proteins and purine bases. Adenine, constituting numerous protein co-factors, can interact with the adenine-binding motif. Using Bayesian Inference and Markov chain Monte Carlo sampling, we created a novel adenine-binding peptide Ile-Tyr-Val-Thr based on the structure of the adenine-binding motifs. Ile-Tyr-Val-Thr generates a semi-pocket that can clip the adenine within, as demonstrated by docking. Then, using thermodynamic techniques, the interaction between Ile-Tyr-Val-Thr and adenine was confirmed. The KD value is 1.50e-5 (ΔH = -20.2 kJ/mol and ΔG = -27.6 kJ/mol), indicating the high affinity. In brief, the adenine-binding peptide Ile-Tyr-Val-Thr may help lower uric acid level by blocking the absorption of food-derived adenine.


Assuntos
Adenina , Teorema de Bayes , Método de Monte Carlo , Peptídeos , Adenina/química , Adenina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Hiperuricemia/metabolismo , Humanos , Termodinâmica , Ácido Úrico/química , Ácido Úrico/metabolismo , Sítios de Ligação
16.
Analyst ; 149(9): 2728-2737, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525963

RESUMO

This work presents the synthesis and characterization of an innovative F,S-doped carbon dots/CuONPs hybrid nanostructure obtained by a direct mixture between F,S-doped carbon dots obtained electrochemically and copper nitrate alcoholic solution. The hybrid nanostructures synthesized were characterized by absorption spectroscopy in the Ultraviolet region (UV-vis), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and different electrochemical techniques. The fluoride and sulfur-doped carbon dots/CuONPs nanostructures were used to prepare a non-enzymatic biosensor on a printed carbon electrode, exhibiting excellent electrocatalytic activity for the simultaneous determination of NADH, dopamine, and uric acid in the presence of ascorbic acid with a detection limit of 20, 80, and 400 nmol L-1, respectively. The non-enzymatic biosensors were also used to determine NADH, dopamine, and uric acid in plasma, and they did not suffer significant interference from each other.


Assuntos
Técnicas Biossensoriais , Carbono , Cobre , Dopamina , Técnicas Eletroquímicas , Limite de Detecção , NAD , Ácido Úrico , Ácido Úrico/sangue , Ácido Úrico/química , Técnicas Biossensoriais/métodos , Dopamina/sangue , Dopamina/análise , Carbono/química , NAD/química , NAD/sangue , Cobre/química , Técnicas Eletroquímicas/métodos , Humanos , Enxofre/química , Fluoretos/química , Pontos Quânticos/química , Nanoestruturas/química , Eletrodos
17.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
18.
STAR Protoc ; 5(1): 102888, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358882

RESUMO

Monosodium urate (MSU) crystal deposition in articular joints and bursal tissue causes acute joint inflammation, which is a hallmark of gout. Here, we describe the steps necessary to create a subcutaneous air pouch on the back of mice that resembles this bursa-like space with a synovial lining-like membrane. We then detail the injection of MSU crystals into this pouch, which induces a localized inflammatory response reminiscent of gout and approaches to quantify the inflammatory response. For complete details on the use and execution of this protocol, please refer to Devi et al. (2023),1 de Almeida et al. (2022),2 and Ratsimandresy et al. (2017).3.


Assuntos
Gota , Ácido Úrico , Camundongos , Animais , Ácido Úrico/efeitos adversos , Ácido Úrico/química , Gota/induzido quimicamente
19.
Colloids Surf B Biointerfaces ; 236: 113803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367289

RESUMO

The core to the treatment of gout is the elimination of pathologic crystal, monosodium urate monohydrate (MSUM). The primary treatment available is to gradually dissolve the "culprit crystals" by lowering the blood uric acid concentration with medications, which often takes a long time and in severe cases must still be treated surgically. Herein, we developed a dynamic bionic platform based on a hydrogel composite membrane (HCM) to screen the direct facilitated solubilization of MSUM crystals by small organic molecules in bionic saturated, or even supersaturated, solutions. The customized and biologically safe (NAGA/PEGDA/NIPAM) HCM, which is consistent with the main amino acid composition of articular cartilage, well mimics the entire process of organic molecules leading to the dissolution of MSUM crystals in the joint system. With the verifications of this platform, it is shown that l-aspartic acid (ASP) significantly promotes the dissolution of MSUM crystals not only in saturated but also in supersaturated solutions. Furthermore, a novel mechanism called "crane effect" was used to explain this "dissolution effect" of ASP on MSUM, which stems from the ability of ASP to lock onto the surface of MSUM crystals through hydrogen bonding by virtue of its two carboxyl groups, and simultaneously its amino group lifts the uric acid molecules from the surface of MSUM crystals by virtue of interactions of hydrogen bonding. The results of bulk crystallization, scanning electron microscopy (SEM), powder X-diffraction (PXRD), and density-functional theory (DFT) studies are quantitatively consistent with this hypothetical "crane effect" mechanism. Hence, this HCM-based functional platform could provide entirely novel ideas and methods for drug design and screening for the treatment of pathological crystal diseases of gout.


Assuntos
Gota , Ácido Úrico , Humanos , Ácido Úrico/química , Biônica , Gota/tratamento farmacológico , Gota/metabolismo , Cristalização , Hidrogéis
20.
Int Immunol ; 36(6): 279-290, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386511

RESUMO

C-type lectin receptors (CLRs) are a family of pattern recognition receptors, which detect a broad spectrum of ligands via small carbohydrate-recognition domains (CRDs). CLEC12A is an inhibitory CLR that recognizes crystalline structures such as monosodium urate crystals. CLEC12A also recognizes mycolic acid, a major component of mycobacterial cell walls, and suppresses host immune responses. Although CLEC12A could be a therapeutic target for mycobacterial infection, structural information on CLEC12A was not available. We report here the crystal structures of human CLEC12A (hCLEC12A) in ligand-free form and in complex with 50C1, its inhibitory antibody. 50C1 recognizes human-specific residues on the top face of hCLEC12A CRD. A comprehensive alanine scan demonstrated that the ligand-binding sites of mycolic acid and monosodium urate crystals may overlap with each other, suggesting that CLEC12A utilizes a common interface to recognize different types of ligands. Our results provide atomic insights into the blocking and ligand-recognition mechanisms of CLEC12A and leads to the design of CLR-specific inhibitors.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo , Cristalografia por Raios X , Ligantes , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA