Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.737
Filtrar
1.
Cells ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39056755

RESUMO

As per the National Survey on Drug Use and Health, 10.5% of Americans aged 12 years and older are suffering from alcohol use disorder, with a wide range of neurological disorders. Alcohol-mediated neurological disorders can be linked to Alzheimer's-like pathology, which has not been well studied. We hypothesize that alcohol exposure can induce astrocytic amyloidosis, which can be corroborated by the neurological disorders observed in alcohol use disorder. In this study, we demonstrated that the exposure of astrocytes to ethanol resulted in an increase in Alzheimer's disease markers-the amyloid precursor protein, Aß1-42, and the ß-site-cleaving enzyme; an oxidative stress marker-4HNE; proinflammatory cytokines-TNF-α, IL1ß, and IL6; lncRNA BACE1-AS; and alcohol-metabolizing enzymes-alcohol dehydrogenase, aldehyde dehydrogenase-2, and cytochrome P450 2E1. A gene-silencing approach confirmed the regulatory role of lncRNA BACE1-AS in amyloid generation, alcohol metabolism, and neuroinflammation. This report is the first to suggest the involvement of lncRNA BACE1-AS in alcohol-induced astrocytic amyloid generation and alcohol metabolism. These findings will aid in developing therapies targeting astrocyte-mediated neurological disorders and cognitive deficits in alcohol users.


Assuntos
Astrócitos , Etanol , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Animais , Humanos , Doenças do Sistema Nervoso/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Citocinas/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética
2.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999999

RESUMO

This study investigates the clustering patterns of human ß-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Análise por Conglomerados , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
3.
Biochim Biophys Acta Gen Subj ; 1868(9): 130665, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969256

RESUMO

BACKGROUND: The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS: Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS: We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS: Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE: Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.


Assuntos
Ácido Aspártico Endopeptidases , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Proteólise , Humanos , Subtilisinas/metabolismo , Domínio Catalítico , Domínios Proteicos , Malária Falciparum/parasitologia , Malária Falciparum/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo
4.
Acta Neuropathol ; 147(1): 97, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856925

RESUMO

Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-ß (Aß) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPß that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPß levels and CSF Aß40, Aß42, and Aß42/Aß40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPß levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPß were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Ácido Aspártico Endopeptidases , Encéfalo , Humanos , Secretases da Proteína Precursora do Amiloide/líquido cefalorraquidiano , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/líquido cefalorraquidiano , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Idoso , Feminino , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Cognição/fisiologia , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo
5.
mBio ; 15(7): e0080524, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38912775

RESUMO

Piperaquine (PPQ) is widely used in combination with dihydroartemisinin as a first-line treatment against malaria. Multiple genetic drivers of PPQ resistance have been reported, including mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and increased copies of plasmepsin II/III (pm2/3). We generated a cross between a Cambodia-derived multidrug-resistant KEL1/PLA1 lineage isolate (KH004) and a drug-susceptible Malawian parasite (Mal31). Mal31 harbors a wild-type (3D7-like) pfcrt allele and a single copy of pm2/3, while KH004 has a chloroquine-resistant (Dd2-like) pfcrt allele with an additional G367C substitution and multiple copies of pm2/3. We recovered 104 unique recombinant parasites and examined a targeted set of progeny representing all possible combinations of variants at pfcrt and pm2/3. We performed a detailed analysis of competitive fitness and a range of PPQ susceptibility phenotypes with these progenies, including PPQ survival assay, area under the dose response curve, and a limited point IC50. We find that inheritance of the KH004 pfcrt allele is required for reduced PPQ sensitivity, whereas copy number variation in pm2/3 further decreases susceptibility but does not confer resistance in the absence of additional mutations in pfcrt. A deep investigation of genotype-phenotype relationships demonstrates that progeny clones from experimental crosses can be used to understand the relative contributions of pfcrt, pm2/3, and parasite genetic background to a range of PPQ-related traits. Additionally, we find that the resistance phenotype associated with parasites inheriting the G367C substitution in pfcrt is consistent with previously validated PPQ resistance mutations in this transporter.IMPORTANCEResistance to piperaquine, used in combination with dihydroartemisinin, has emerged in Cambodia and threatens to spread to other malaria-endemic regions. Understanding the causal mutations of drug resistance and their impact on parasite fitness is critical for surveillance and intervention and can also reveal new avenues to limiting the evolution and spread of drug resistance. An experimental genetic cross is a powerful tool for pinpointing the genetic determinants of key drug resistance and fitness phenotypes and has the distinct advantage of quantifying the effects of naturally evolved genetic variation. Our study was strengthened since the full range of copies of KH004 pm2/3 was inherited among the progeny clones, allowing us to directly test the role of the pm2/3 copy number on resistance-related phenotypes in the context of a unique pfcrt allele. Our multigene model suggests an important role for both loci in the evolution of this multidrug-resistant parasite lineage.


Assuntos
Antimaláricos , Ácido Aspártico Endopeptidases , Resistência a Medicamentos , Proteínas de Membrana Transportadoras , Plasmodium falciparum , Proteínas de Protozoários , Quinolinas , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resistência a Medicamentos/genética , Antimaláricos/farmacologia , Quinolinas/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana Transportadoras/genética , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Humanos , Alelos , Camboja , Mutação , Piperazinas
6.
Arterioscler Thromb Vasc Biol ; 44(8): 1737-1747, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38868939

RESUMO

Dysfunctional endothelium is increasingly recognized as a mechanistic link between cardiovascular risk factors and dementia, including Alzheimer disease. BACE1 (ß-site amyloid-ß precursor protein-cleaving enzyme 1) is responsible for ß-processing of APP (amyloid-ß precursor protein), the first step in the production of Aß (amyloid-ß) peptides, major culprits in the pathogenesis of Alzheimer disease. Under pathological conditions, excessive activation of BACE1 exerts detrimental effects on endothelial function by Aß-dependent and Aß-independent mechanisms. High local concentration of Aß in the brain blood vessels is responsible for the loss of key vascular protective functions of endothelial cells. More recent studies recognized significant contribution of Aß-independent proteolytic activity of endothelial BACE1 to the pathogenesis of endothelial dysfunction. This review critically evaluates existing evidence supporting the concept that excessive activation of BACE1 expressed in the cerebrovascular endothelium impairs key homeostatic functions of the brain blood vessels. This concept has important therapeutic implications. Indeed, improved understanding of the mechanisms of endothelial dysfunction may help in efforts to develop new approaches to the protection and preservation of healthy cerebrovascular function.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Endotélio Vascular , Humanos , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Circulação Cerebrovascular , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/enzimologia , Transtornos Cerebrovasculares/etiologia
7.
J Med Chem ; 67(12): 10152-10167, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842406

RESUMO

The prevailing but not undisputed amyloid cascade hypothesis places the ß-site of APP cleaving enzyme 1 (BACE1) center stage in Alzheimer's Disease pathogenesis. Here, we investigated functional properties of BACE1 with novel tag- and antibody-free labeling tools, which are conjugates of the BACE1-inhibitor IV (also referred to as C3) linked to different impermeable Alexa Fluor dyes. We show that these fluorescent small molecules bind specifically to BACE1, with a 1:1 labeling stoichiometry at their orthosteric site. This is a crucial property especially for single-molecule and super-resolution microscopy approaches, allowing characterization of the dyes' labeling capabilities in overexpressing cell systems and in native neuronal tissue. With multiple colors at hand, we evaluated BACE1-multimerization by Förster resonance energy transfer (FRET) acceptor-photobleaching and single-particle imaging of native BACE1. In summary, our novel fluorescent inhibitors, termed Alexa-C3, offer unprecedented insights into protein-protein interactions and diffusion behavior of BACE1 down to the single molecule level.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Corantes Fluorescentes/química , Animais , Células HEK293 , Imagem Individual de Molécula/métodos
8.
Drug Dev Res ; 85(4): e22214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816986

RESUMO

In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and ß-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.


Assuntos
Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide , Butirilcolinesterase , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/farmacologia , Acetamidas/química , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química
9.
Exp Neurol ; 377: 114805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729552

RESUMO

Staufen-1 (STAU1) is a double-stranded RNA-binding protein (RBP) involved in a variety of pathological conditions. In this study, we investigated the potential role of STAU1 in Alzheimer's disease (AD), in which two hallmarks are well-established as cerebral ß-amyloid protein (Aß) deposition and Tau-centered neurofibrillary tangles. We found that STAU1 protein level was significantly increased in cells that stably express full-length APP and the brain of APP/PS1 mice, an animal model of AD. STAU1 knockdown, as opposed to overexpression, significantly decreased the protein levels of ß-amyloid converting enzyme 1 (BACE1) and Aß. We further found that STAU1 extended the half-life of the BACE1 mRNA through binding to the 3' untranslated region (3'UTR). Transcriptome analysis revealed that STAU1 enhanced the expression of growth arrest and DNA damage 45 ß (GADD45B) upstream of P38 MAPK signaling, which contributed to STAU1-induced regulation of Tau phosphorylation at Ser396 and Thr181. Together, STAU1 promoted amyloidogenesis by inhibiting BACE1 mRNA decay, and augmented Tau phosphorylation through activating GADD45B in relation to P38 MAPK. Targeting STAU1 that acts on both amyloidogenesis and tauopathy may serve as an optimistic approach for AD treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Proteínas de Ligação a RNA , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Fosforilação , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Células Cultivadas , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética
10.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791263

RESUMO

Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of ß-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aß) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Melatonina , Neuroblastoma , Melatonina/farmacologia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Glucose/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oxigênio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia/metabolismo
11.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792065

RESUMO

A previous study reported that the ethanolic extract of the edible fern, Diplazium esculentum (Retz.) Sw. (DE), obtained from a non-optimized extraction condition exhibited anti-Alzheimer's disease (AD) properties through the inhibition of a rate-limiting enzyme in amyloid peptide formation, ß-secretase-1 (BACE-1). Nevertheless, a non-optimized or suboptimal extraction may lead to several issues, such as a reduction in extraction efficiency and increased time and plant materials. In this study, extraction of the DE was optimized to obtain appropriate BACE-1 inhibition using a Box-Behnken design (BBD) and response surface methodology (RSM). Data revealed that the optimal extraction condition was 70% (v/v) aqueous ethanol, 50 min extraction time, 30 °C extraction temperature, and 1:30 g/mL solid/liquid ratio, giving BACE-1 inhibition at 56.33%. In addition, the extract also exhibited significant antioxidant activities compared to the non-optimized extraction. Metabolomic phytochemical profiles and targeted phytochemical analyses showed that kaempferol, quercetin, and their derivatives as well as rosmarinic acid were abundant in the extract. The optimized DE extract also acted synergistically with donepezil, an AD drug suppressing BACE-1 activities. Data received from Drosophila-expressing human amyloid precursor proteins (APPs) and BACE-1, representing the amyloid hypothesis, showed that the optimized DE extract penetrated the fly brains, suppressed BACE-1 activities, and improved locomotor functions. The extract quenched the expression of glutathione S transferase D1 (GSTD1), inositol-requiring enzyme (IRE-1), and molecular chaperone-binding immunoglobulin (Bip), while donepezil suppressed these genes and other genes involved in antioxidant and endoplasmic reticulum (ER) stress response, including superoxide dismutase type 1 (SOD1), activating transcription factor 6 (ATF-6), and protein kinase R-like endoplasmic reticulum kinase (PERK). To sum up, the optimized extraction condition reduced extraction time while resulting in higher phytochemicals, antioxidants, and BACE-1 inhibitors.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Antioxidantes , Compostos Fitoquímicos , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Doença de Alzheimer/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Gleiquênias/química , Humanos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo
12.
J Alzheimers Dis ; 99(2): 431-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701146

RESUMO

Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer's disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20-60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Diagnóstico Precoce , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Animais
13.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38712757

RESUMO

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Assuntos
Antibacterianos , Desenho de Fármacos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Lipoproteínas/antagonistas & inibidores , Proteínas de Bactérias , Peptídeos , Ácido Aspártico Endopeptidases
14.
EMBO Rep ; 25(6): 2773-2785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773321

RESUMO

The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Lisossomos , Proteínas de Membrana , Lisossomos/metabolismo , Humanos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dobramento de Proteína , Transporte Proteico , Lectinas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Camundongos , Células HeLa
15.
J Comput Chem ; 45(23): 2024-2033, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725239

RESUMO

In binding free energy calculations, simulations must sample all relevant conformations of the system in order to obtain unbiased results. For instance, different ligands can bind to different metastable states of a protein, and if these protein conformational changes are not sampled in relative binding free energy calculations, the contribution of these states to binding is not accounted for and thus calculated binding free energies are inaccurate. In this work, we investigate the impact of different beta-sectretase 1 (BACE1) protein conformations obtained from x-ray crystallography on the binding of BACE1 inhibitors. We highlight how these conformational changes are not adequately sampled in typical molecular dynamics simulations. Furthermore, we show that insufficient sampling of relevant conformations induces substantial error in relative binding free energy calculations, as judged by a variation in calculated relative binding free energies up to 2 kcal/mol depending on the starting protein conformation. These results emphasize the importance of protein conformational sampling and pose this BACE1 system as a challenge case for further method development in the area of enhanced protein conformational sampling, either in combination with binding calculations or as an endpoint correction.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Cristalografia por Raios X , Ligantes
16.
J Neuropathol Exp Neurol ; 83(8): 670-683, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819094

RESUMO

The common neurodegenerative disorder Alzheimer disease (AD) is characterized by memory dysfunction and cognitive decline in the elderly. Neuropathological features include aggregated ß-amyloid (Aß) accumulation, neuroinflammation, and oxidative stress in the brain. Daphnetin (DAPH), a natural coumarin derivative, has the potential for inhibiting inflammatory and oxidative responses. We explored neuroprotective roles of DAPH treatment in the APP/PS1 transgenic mouse AD model. DAPH ameliorated spatial learning disabilities in Morris water maze tests and reduced Aß deposition, assessed by immunohistochemistry. It also reduced the Aß content in supernatants of neurons from fetal APP/PS1 mice, assessed by cell-based soluble ELISA. Molecular docking and fluorescence resonance energy transfer-based assay results suggested that DAPH could directly inhibit BACE1 activity. Furthermore, in vitro experiments utilizing isolated rat neurons assessing RNA expression profiling, immunofluorescence, TUNEL assay, and Western-blot analysis, suggested the potential of DAPH for regulating BDNF and GM-CSF expression and mitigating Aß1-42-induced cortical injury, synaptic loss, and apoptosis. HO-1 and Nrf2 mRNA and protein expression were also increased in a dose-dependent manner. These results underscore the potential of DAPH as a neuroprotective agent in reversing memory deficits associated with AD and bolster its candidacy as a multitarget natural small-molecule drug for AD patients.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Modelos Animais de Doenças , Heme Oxigenase-1 , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2 , Neurônios , Fármacos Neuroprotetores , Umbeliferonas , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Umbeliferonas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ratos , Ácido Aspártico Endopeptidases/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Heme Oxigenase-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Ratos Sprague-Dawley , Masculino , Proteínas de Membrana
17.
Phytother Res ; 38(7): 3489-3508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695373

RESUMO

Neuroinflammation may play an important role in the development of Alzheimer's disease (AD). Previous studies have reported that lipopolysaccharide (LPS)-induced neuroinflammation causes memory impairments and behavioral disorders. We investigated the potential preventive effects of punicalin (PUN), a polyphenolic component of pomegranate, on LPS-induced memory deficiency and anxiety- and depression-like behaviors, along with the underlying mechanisms. LPS-treated cultured microglial BV2 cells and BV2 cell/Neuro-2a (N2a) cell coculture system were investigated for anti-neuroinflammatory effects of PUN in vitro. The in vivo experiments involved mice administered a 4-week course of oral gavage with 1500 mg/kg/d PUN before intraperitoneal LPS (250 mg/kg daily 7 times) injections. The in vitro results demonstrated that PUN inhibited the LPS-induced inflammatory cytokine (IL-18, IL-1ß, TNF-ɑ, and IL-6) production in BV2 cells and protected N2a cells from synaptic damage mediated by BV2 microglia-induced neuroinflammation. In in vivo studies, it was observed that PUN improved memory impairment and anxiety- and depression-like behaviors caused by LPS and reduced the expression of inflammatory proteins such as iNOS, COX-2, IL-1ß, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the LPS-induced production of MDA; increased the activities of CAT, SOD, and GSH-Px, and inhibited LPS-induced Aß1-42 generation through down-regulation of APP and BACE1 expression. Moreover, PUN also suppressed the expression of TLR4, IRAK4, TRAF6, IKK-ß, NF-κB, p65, and HMGB1 in LPS-treated mouse brain and cultured microglial BV-2 cells. These results suggest that PUN inhibits LPS-induced memory impairment via anti-inflammatory and anti-amylogenic mechanisms through inhibition of TLR4-NF-kB activation.


Assuntos
Lipopolissacarídeos , Transtornos da Memória , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Estresse Oxidativo , Punica granatum , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Camundongos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Punica granatum/química , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Polifenóis/farmacologia , Peptídeos beta-Amiloides , Linhagem Celular , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Camundongos Endogâmicos C57BL , Comportamento Animal/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases
18.
Ageing Res Rev ; 98: 102342, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762102

RESUMO

Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the ß-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Humanos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Animais , Descoberta de Drogas
19.
Antimicrob Agents Chemother ; 68(7): e0034624, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38771031

RESUMO

While the Plasmodium falciparum malaria parasite continues to cause severe disease globally, Mozambique is disproportionally represented in malaria case totals. Acquisition of copy number variations (CNVs) in the parasite genome contributes to antimalarial drug resistance through overexpression of drug targets. Of interest, piperaquine resistance is associated with plasmepsin 2 and 3 CNVs (pfpmp2 and pfpmp3, respectively), while CNVs in the multidrug efflux pump, multidrug resistance-1 (pfmdr1), increase resistance to amodiaquine and lumefantrine. These antimalarials are partner drugs in artemisinin combination therapies (ACTs) and therefore, CNV detection with accurate and efficient tools is necessary to track ACT resistance risk. Here, we evaluated ~300 clinically derived samples collected from three sites in Mozambique for resistance-associated CNVs. We developed a novel, medium-throughput, quadruplex droplet digital PCR (ddPCR) assay to simultaneously quantify the copy number of pfpmp3, pfpmp2, and pfmdr1 loci in these clinical samples. By using DNA from laboratory parasite lines, we show that this nanodroplet-based method is capable of detecting picogram levels of parasite DNA, which facilitates its application for low yield and human host-contaminated clinical surveillance samples. Following ddPCR and the application of quality control standards, we detected CNVs in 13 of 229 high-quality samples (prevalence of 5.7%). Overall, our study revealed a low number of resistance CNVs present in the parasite population across all three collection sites, including various combinations of pfmdr1, pfpmp2, and pfpmp3 CNVs. The potential for future ACT resistance across Mozambique emphasizes the need for continued molecular surveillance across the region.


Assuntos
Antimaláricos , Variações do Número de Cópias de DNA , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Antimaláricos/farmacologia , Moçambique , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Humanos , Resistência a Medicamentos/genética , Variações do Número de Cópias de DNA/genética , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase/métodos , Quinolinas/farmacologia , Amodiaquina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ácido Aspártico Endopeptidases/genética , Artemisininas/farmacologia , Lumefantrina/farmacologia , Piperazinas
20.
Arch Pharm (Weinheim) ; 357(6): e2400061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631672

RESUMO

Fragment-based screening has become indispensable in drug discovery. Yet, the weak binding affinities of these small molecules still represent a challenge for the reliable detection of fragment hits. The extent of this issue was illustrated in the literature for the aspartic protease endothiapepsin: When seven biochemical and biophysical in vitro screening methods were applied to screen a library of 361 fragments, very poor overlap was observed between the hit fragments identified by the individual approaches, resulting in high levels of false positive and/or false negative results depending on the mutually compared methods. Here, the reported in vitro findings are juxtaposed with the results from in silico docking and scoring approaches. The docking programs GOLD and Glide were considered with the scoring functions ASP, ChemScore, ChemPLP, GoldScore, DSXCSD, and GlideScore. First, the ranking power and scoring power were assessed for the named scoring functions. Second, the capability of reproducing the crystallized fragment binding modes was tested in a structure-based redocking approach. The redocking success notably depended on the ligand efficiency of the considered fragments. Third, a blinded virtual screening approach was employed to evaluate whether in silico screening can compete with in vitro methods in the enrichment of fragment databases.


Assuntos
Ácido Aspártico Endopeptidases , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/química , Ligantes , Descoberta de Drogas , Relação Estrutura-Atividade , Ligação Proteica , Simulação por Computador , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...