Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.518
Filtrar
1.
Anim Biotechnol ; 35(1): 2379897, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39102232

RESUMO

The objectives of this study were to estimate genetic parameters for citric acid content (CA) and lactic acid content (LA) in sheep milk and to identify the associated candidate genes in a New Zealand dairy sheep flock. Records from 165 ewes were used. Heritability estimates based on pedigree records for CA and LA were 0.65 and 0.33, respectively. The genetic and phenotypic correlations between CA and LA were strong-moderate and negative. Estimates of genomic heritability for CA and LA were also high (0.85, 0.51) and the genomic correlation between CA and LA was strongly negative (-0.96 ± 0.11). No significant associations were found at the Bonferroni level. However, one intragenic SNP in C1QTNF1 (chromosome 11) was associated with CA, at the chromosomal significance threshold. Another SNP associated with CA was intergenic (chromosome 15). For LA, the most notable SNP was intragenic in CYTH1 (chromosome 11), the other two SNPs were intragenic in MGAT5B and TIMP2 (chromosome 11), and four SNPs were intergenic (chromosomes 1 and 24). The functions of candidate genes indicate that CA and LA could potentially be used as biomarkers for energy balance and clinical mastitis. Further research is recommended to validate the present results.


Assuntos
Ácido Cítrico , Estudo de Associação Genômica Ampla , Ácido Láctico , Leite , Polimorfismo de Nucleotídeo Único , Animais , Leite/química , Feminino , Ovinos/genética , Nova Zelândia , Polimorfismo de Nucleotídeo Único/genética , Ácido Cítrico/análise , Ácido Láctico/metabolismo
2.
World J Microbiol Biotechnol ; 40(10): 294, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112832

RESUMO

Rahnella aquatilis causes seafoods to spoil by metabolizing sulfur-containing amino acids and/or proteins, producing H2S in products. The type II secretion system (T2SS) regulates the transport of proteases from the cytoplasm to the surrounding environment and promotes bacterial growth at low temperatures. To prevent premature fish spoilage, new solutions for inhibiting the T2SS of bacteria should be researched. In this study, global transcriptome sequencing was used to analyze the spoilage properties of R. aquatilis KM05. Two of the mapped genes/coding sequences (CDSs) were matched to the T2SS, namely, qspF and gspE, and four of the genes/CDSs, namely, ftsH, rseP, ptrA and pepN, were matched to metalloproteases or peptidases in R. aquatilis KM05. Subinhibitory concentrations of citric (18 µM) and acetic (41 µM) acids caused downregulation of T2SS-related genes (range from - 1.0 to -4.5) and genes involved in the proteolytic activities of bacteria (range from - 0.5 to -4.0). The proteolytic activities of R. aquatilis KM05 in vitro were reduced by an average of 40%. The in situ experiments showed the antimicrobial properties of citric and acetic acids against R. aquatilis KM05; the addition of an acidulant to salmon fillets limited microbial growth. Citric and acetic acids extend the shelf life of fish-based products and prevent food waste.


Assuntos
Ácido Cítrico , Rahnella , Alimentos Marinhos , Animais , Ácido Cítrico/metabolismo , Alimentos Marinhos/microbiologia , Rahnella/genética , Rahnella/metabolismo , Salmão/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Microbiologia de Alimentos , Transcriptoma , Regulação Bacteriana da Expressão Gênica
3.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126060

RESUMO

The choice of dialysate buffer in hemodialysis is crucial, with acetate being widely used despite complications. Citrate has emerged as an alternative because of its favorable effects, yet concerns persist about its impact on calcium and magnesium levels. This study investigates the influence of citrate dialysates (CDs) with and without additional magnesium supplementation on CKD-MBD biomarkers and assesses their ability to chelate divalent metals compared to acetate dialysates (ADs). A prospective crossover study was conducted in a single center, involving patients on thrice-weekly online hemodiafiltration (HDF). The following four dialysates were compared: two acetate-based and two citrate-based. Calcium, magnesium, iPTH, iron, selenium, cadmium, copper, zinc, BUN, albumin, creatinine, bicarbonate, and pH were monitored before and after each dialysis session. Seventy-two HDF sessions were performed on eighteen patients. The CDs showed stability in iPTH levels and reduced post-dialysis total calcium, with no significant increase in adverse events. Magnesium supplementation with CDs prevented hypomagnesemia. However, no significant differences among dialysates were observed in the chelation of other divalent metals. CDs, particularly with higher magnesium concentrations, offer promising benefits, including prevention of hypomagnesemia and stabilization of CKD-MBD parameters, suggesting citrate as a viable alternative to acetate. Further studies are warranted to elucidate long-term outcomes and optimize dialysate formulations. Until then, given our results, we recommend that when a CD is used, it should be used with a 0.75 mmol/L Mg concentration rather than a 0.5 mmol/L one.


Assuntos
Acetatos , Ácido Cítrico , Estudos Cross-Over , Hemodiafiltração , Magnésio , Humanos , Masculino , Feminino , Hemodiafiltração/métodos , Pessoa de Meia-Idade , Magnésio/administração & dosagem , Idoso , Estudos Prospectivos , Soluções para Diálise/química , Cálcio
4.
World J Microbiol Biotechnol ; 40(10): 298, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39128979

RESUMO

Mortierella alpina is popular for lipid production, but the low carbon conversion rate and lipid yield are major obstacles for its economic performance. Here, external addition of organic acids involved in tricarboxylic acid cycle was used to tune carbon flux and improve lipid production. Citrate was determined to be the best organic acid that can be used for enhancing lipid production. By the addition of citrate, the lipid titer and content were approximately 1.24 and 1.34 times higher, respectively. Meanwhile, citrate supplement also promoted the accumulation of succinate, an important value-added platform chemical. Owing to the improved lipid and succinate production through adding citrate, the carbon conversion rate of M. alpina reached up to 52.17%, much higher than that of the control group (14.11%). The addition of citrate could redistribute carbon flux by regulating the expression level of genes related to tricarboxylic acid cycle metabolism. More carbon fluxes flow to lipid and succinate synthesis, which greatly improved the carbon conversion efficiency of M. alpina. This study provides an effective and straightforward strategy with potential economic benefits to improve carbon conversion efficiency in M. alpina.


Assuntos
Carbono , Ciclo do Ácido Cítrico , Ácido Cítrico , Mortierella , Ácido Succínico , Mortierella/metabolismo , Mortierella/genética , Ácido Succínico/metabolismo , Carbono/metabolismo , Ácido Cítrico/metabolismo , Lipídeos/biossíntese , Metabolismo dos Lipídeos , Regulação Fúngica da Expressão Gênica , Fermentação
5.
Reprod Domest Anim ; 59(8): e14701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109447

RESUMO

This study aimed to evaluate the effect of chemical gasification and HEPES as alternative systems to pH control during in vitro maturation on bovine oocytes competence. Groups of 20 bovine cumulus oocytes complexes (COCs) were randomly distributed and cultured for 24 h in one of the following experimental groups: (i) chemical reaction (ChRG) system: CO2 generated from sodium bicarbonate and citric acid reaction (ii) culture media TCM-HEPES (HEPES-G); and (iii) control group (CNTG) in conventional incubator. After in vitro maturation (IVM), the COCs were in vitro fertilized (IVF), and in vitro cultivated (IVC) in a conventional incubator. We evaluated oocyte nuclear maturation, cleavage and blastocyst rates, in addition to the relative mRNA expression of BAX, BMP-15, AREG and EREG genes in oocytes and cumulus cells. The proportion of oocytes in metaphase II was higher in CNTG and ChRG (77.57% and 77.06%) than in the HEPES-G (65.32%; p = .0408 and .0492, respectively). The blastocyst production was similar between CNTG and ChRG (26.20% and 28.47%; p = .4232) and lower (p = .001) in the HEPES-G (18.71%). The relative mRNA expression of BAX gene in cumulus cells was significantly higher (p = .0190) in the HEPES-G compared to the CNTG. Additionally, the relative mRNA expression of BMP-15 gene was lower (p = .03) in oocytes from HEPES-G compared to the CNTG. In conclusion, inadequate atmosphere control has a detrimental effect on oocyte maturation. Yet, the use of chemical gasification can be an efficient alternative to bovine COCs cultivation.


Assuntos
Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Bovinos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Fertilização in vitro/veterinária , Feminino , Meios de Cultura , Blastocisto/efeitos dos fármacos , Células do Cúmulo/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Bicarbonato de Sódio/farmacologia , Ácido Cítrico/farmacologia , Técnicas de Cultura Embrionária/veterinária
6.
PLoS One ; 19(8): e0308606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121171

RESUMO

AIM: This study aimed to compare the effectiveness of initial irrigation with sodium hypochlorite (NaOCl) and final irrigation with QMix, 40% citric acid, and 17% ethylenediaminetetraacetic acid (EDTA) on smear layer removal and dentin erosion. METHODOLOGY: Forty extracted human mandibular premolar teeth were randomly divided into four groups (n = 10) according to the type of final irrigants used: 17% EDTA, QMix, citric acid, and control (normal saline). Canals were mechanically prepared using ProTaper Next instruments to an apical size of X3. Subsequently, the roots were sectioned in a buccolingual direction. Scanning electron microscopy (SEM) was used to assess the presence of the smear layer and the amount of dentin erosion in the coronal, middle, and apical thirds of the root canals. RESULTS: In regards to smear layer removal, there was a significant difference between the control group and the other tested groups. Moreover, it was significantly higher in the coronal and middle thirds than in the apical third. However, there were no significant differences between the groups of EDTA, QMix, and citric acid. Concerning dentin erosion, citric acid produced significantly more dentin erosion than the other tested groups. CONCLUSION: Final irrigation with solutions had a higher ability to remove the smear layer in the coronal and middle thirds compared to the apical third. Of all the solutions tested, 40% citric acid had the most pronounced impact on dentin erosion, followed by 17% EDTA and QMix.


Assuntos
Ácido Cítrico , Dentina , Ácido Edético , Microscopia Eletrônica de Varredura , Irrigantes do Canal Radicular , Camada de Esfregaço , Hipoclorito de Sódio , Humanos , Irrigantes do Canal Radicular/farmacologia , Ácido Cítrico/farmacologia , Ácido Cítrico/química , Ácido Edético/química , Ácido Edético/farmacologia , Hipoclorito de Sódio/farmacologia , Dentina/efeitos dos fármacos , Dentina/ultraestrutura , Dente Pré-Molar/efeitos dos fármacos , Preparo de Canal Radicular/métodos , Irrigação Terapêutica/métodos , Biguanidas/farmacologia , Erosão Dentária , Polímeros
7.
ACS Appl Mater Interfaces ; 16(29): 38576-38585, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986140

RESUMO

Enhancing the hydrophilicity and UV protective property of poly(ethylene terephthalate) (PET) fabric are two significant ways to upgrade its quality and enlarge the applicable area. Biobased finishes are greatly welcomed for the fabrication of sustainable textiles; however, their application on PET fabric is still challenging compared with the case of natural fabric. This study presents a strategy that immobilizes epigallocatechin gallate (EGCG) onto PET fabric using citric acid (CA) for durably hydrophilic and UV-proof properties with negligible color change. A controllable surface-activating method integrating alkaline and deep eutectic solvent (DES) is customized for the PET fabric to promote the reactions among PET, CA, and EGCG. The hydrophilic, antistatic, and UV protective properties of functionalized PET fabric were explored. Results show that the hydrophilicity of the PET fabric after direct EGCG treatment increases but drops sharply after first-round washing due to weak interactions. The combined alkaline/DES pretreatment increases the number of hydrophilic groups and the roughness of PET fibers. After EGCG modification, the moisture regain (MR) of PET fabric increases from 0.41 to 0.64%. The contact angle and electrostatic charge half-life (T1/2) decreases from >120 to 23°, and from >60 to 0.13 s, respectively. The MR and T1/2 are well retained after a 10-cycle washing. In addition, the UV protective factor of the PET fabric increases from 18 to 36. A very slight yellowing phenomenon occurs on the PET fabric after the treatment. In all, this research attempts to integrate a biobased finishing agent and an eco-friendly cross-linker on synthetic fiber for durable functions, which is transferrable to the sustainable fabrication of other polymeric materials such as fibers or films.


Assuntos
Catequina , Ácido Cítrico , Interações Hidrofóbicas e Hidrofílicas , Polietilenotereftalatos , Têxteis , Raios Ultravioleta , Catequina/química , Catequina/análogos & derivados , Polietilenotereftalatos/química , Ácido Cítrico/química , Propriedades de Superfície
8.
Braz Oral Res ; 38: e056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39016365

RESUMO

This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.


Assuntos
Dentina , Fluoretos Tópicos , Teste de Materiais , Polifosfatos , Fluoreto de Sódio , Propriedades de Superfície , Erosão Dentária , Bovinos , Animais , Polifosfatos/farmacologia , Polifosfatos/química , Dentina/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Erosão Dentária/prevenção & controle , Fluoretos Tópicos/farmacologia , Análise de Variância , Fatores de Tempo , Propriedades de Superfície/efeitos dos fármacos , Distribuição Aleatória , Reprodutibilidade dos Testes , Nanopartículas/química , Abrasão Dentária/prevenção & controle , Saliva Artificial/química , Ácido Cítrico/farmacologia , Valores de Referência , Testes de Dureza
9.
AAPS PharmSciTech ; 25(6): 159, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987438

RESUMO

Vitamin C is extensively used in cosmetic formulation, howbeit stability is the supreme demerit that limits its use in beautifying products. Numerous techniques are being employed to inhibit the degradation of vitamin C caused by formulation components to facilitate the use in skin rejuvenating products. Diverse materials are being exercised in formulation to stabilize the ascorbic acid and ingredients selected in this formulation composition help for stabilization. The initial stable prototype is developed and further optimization is accomplished by applying the design of experiment tools. The stable pharmaceutical formulations were evaluated for the evaluation parameters and designated as two optimized formulations. The analytical method for the assay of ascorbic acid from the United States pharmacopeia and the related substance method from European pharmacopeia has been modified to be used for cream formulation. The DoE design exhibited that the stability of formulation is impacted by citric acid and tartaric acid but not by propylene glycol and glycerin. The analysis results of topical formulations for the evaluation parameter exhibited satisfactory results. The in-vitro release study method has been developed, optimized, and validated to fit the analysis. The in-vitro studies have been performed for selected compositions and both the formulation has similar kinds of release patterns. The stability study as per ICH guidelines exhibited that the product is stable for accelerated, intermediate, and room-temperature storage conditions. The optimized formulation shows constant release and permeation of ascorbic acid through the skin. The formulation with the combinations of citric acid, tartaric acid, and tocopherol is more stable and the degradation of vitamin C has been reduced significantly. The beaucoup strategies in the unique composition help to protect the degradation by inhibiting the multitudinous degradation pathways.


Assuntos
Ácido Ascórbico , Química Farmacêutica , Estabilidade de Medicamentos , Ácido Ascórbico/química , Química Farmacêutica/métodos , Tartaratos/química , Ácido Cítrico/química , Composição de Medicamentos/métodos , Excipientes/química
10.
Respir Physiol Neurobiol ; 327: 104302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019202

RESUMO

OBJECTIVE: This study compares two methods of citric acid-induced cough in guinea pigs in whole-body plethysmography (WBP) and double chamber plethysmography (DCP) to evaluate their efficacy. METHODS: Sixteen specific pathogen-free (SPF) and sixteen conventionally-bred (CON) animals were exposed to 0.4 M citric acid aerosol. They underwent cough provocation using both DCP and WBP methods. The number of coughs and latency to the first cough were recorded and analysed using statistical methods to determine significant differences between the two techniques. RESULTS: WBP resulted in significantly higher cough counts (WBP vs. DCP: 13±9 vs 2±3 for SPF; 14±8 vs 5±5 for CON; p<0.0001) and shorter latency (WBP vs. DCP: 59±6 s vs 159±14 s for SPF; 77±4 s vs 112±12 s for CON; p<0.0001) compared to DCP in both groups. CONCLUSION: Methodological differences substantially impact cough responses. WBP provides a more reliable and physiologically relevant methodology for cough assessment, suggesting the need for standardized protocols in cough research to enhance translational relevance.


Assuntos
Ácido Cítrico , Tosse , Modelos Animais de Doenças , Pletismografia Total , Animais , Tosse/fisiopatologia , Tosse/induzido quimicamente , Cobaias , Ácido Cítrico/farmacologia , Masculino
11.
Water Res ; 261: 122052, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991245

RESUMO

Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 µM) significantly enhanced •OH production by 1.9-fold (51.9 µM) and 1.3-fold (36.2 µM), respectively, whereas succinate (SA) exhibited limited effect (30.7 µM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 µM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.


Assuntos
Óxido de Alumínio , Radical Hidroxila , Oxirredução , Radical Hidroxila/química , Óxido de Alumínio/química , Minerais/química , Ferro/química , Adsorção , Ácido Cítrico/química
12.
Mol Pharm ; 21(8): 4060-4073, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013609

RESUMO

Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.


Assuntos
Anticorpos Monoclonais , Compostos Férricos , Luz , Oxirredução , Soroalbumina Bovina , Espectrometria de Massas em Tandem , Raios Ultravioleta , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Compostos Férricos/química , Cromatografia Líquida de Alta Pressão , Soluções Tampão , Fotólise , Bovinos , Ácido Cítrico/química , Dissulfetos/química , Ferro/química
13.
Environ Sci Pollut Res Int ; 31(35): 47655-47673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39003426

RESUMO

Phytoremediation is an in situ remediation and eco-friendly technique employing accumulator plant species to remove trace elements (TEs) from contaminated sites. Moreover, it has been demonstrated that both natural and synthetic amendments can enhance trace elements (TEs) phytoremediation from polluted soils through bioenergy crops. This work assessed the synergistic impact of two tested biochar (BC) from data palm (B1) and Prosopis (B2) (1.5%/ kg), citric acid (CA, 1.5 mmol/kg) and vermiwash (VW, 20 ml/kg) to enhance the remediation of tested TEs (Mn, Zn, Cd, Pb, Ni, Cu, and Fe) from Mahad AD'Dahab mine-contaminated soil by sorghum (Sorghum bicolor L.). The BC and CA amendments alone and combined with VW significantly augmented the proliferation and survival of sorghum grown in mine-contaminated soil. Considering the individual and combined applications of VW and BC, the influence on plant growth followed this order: K < VW < B2 < B1 < B1 + VW < B2 + VW < CA < CA + VW. Applying tested BC/CA and VW significantly increased chlorophyll compared to unamended soil. The outcomes revealed a substantial elevation in TE absorption in both shoot and root (p ≤ 0.05) with all tested treatments compared to the untreated soil (K). The combined application of CA and VW resulted in the most significant TE uptake of TEs at both the root and the shoot. Furthermore, adding CA or VW as a foliar spray enhanced the bioaccumulation factor (BCF) and translocation factor (TF) of studied metals. The combined addition of CA and foliar spraying of VW was more effective than the sole addition of CA or VW. Such increase reached 20.0%, 15.6%, 19.4%, 14.3%, 14.0%, and 25.6% of TF, and 13.7%, 11.9%, 8.3%, 20.9%, 20.5%,18.7%, and 19.8% of BCE for Cd, Cu, Fe, Mn, Ni, Pb, and Zn, respectively. This study highlights the efficiency of combining CA/BC with VW as a more viable option for remediating mine-contaminated soil than individual amendments. However, future research should prioritize long-term field trials to assess the efficiency of using citric acid and vermiwash for restoring contaminated mining soils.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Ácido Cítrico , Mineração , Poluentes do Solo , Solo , Sorghum , Carvão Vegetal/química , Ácido Cítrico/química , Solo/química , Recuperação e Remediação Ambiental/métodos
14.
ACS Appl Mater Interfaces ; 16(30): 39090-39103, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031058

RESUMO

Prolonged drought conditions are a critical challenge for agricultural advancement, threatening food security and environmental equilibrium. To overcome these issues, enhancing plant resilience to drought is essential for plant growth and sustainable agriculture. In this study, blue-emitting antioxidant carbon dots (B-CDs), synthesized from citric acid and ascorbic acid, emerged as a promising solution to enhance the drought resistance of peas (Pisum sativum L.). B-CDs can efficiently scavenge reactive oxygen species (ROS), which are harmful in excess to plants under stress conditions. Through detailed experimental analyses and density functional theory (DFT) studies, it is found that these B-CDs possess structures featuring eight-membered aromatic rings with abundant oxygen-containing functional groups, providing active sites for reactions with ROS. The practical benefits of the B-CDs are evident in tests with pea plants exposed to drought conditions. These plants show a remarkable reduction in ROS accumulation, an increase in photosynthetic efficiency due to improved electron transfer rates, and significant growth enhancement. Compared to untreated controls under drought stress, the application of B-CDs results in an impressive increase in the fresh and dry weights of both the shoots and roots of pea seedlings by 39.5 and 43.2% for fresh weights and 121.0 and 73.7% for dry weights, respectively. This suggests that B-CDs can significantly mitigate the negative effects of drought on plants. Thus, leveraging B-CDs opens a novel avenue for enhancing plant resilience to abiotic stressors through nanotechnology, thereby offering a sustainable pathway to counter the challenges of drought in agriculture.


Assuntos
Antioxidantes , Carbono , Secas , Pisum sativum , Pontos Quânticos , Espécies Reativas de Oxigênio , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Carbono/química , Antioxidantes/química , Antioxidantes/metabolismo , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Ácido Cítrico/química , Ácido Ascórbico/química , Resistência à Seca
15.
Food Chem ; 457: 140399, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029314

RESUMO

The typically low solubility and gelation capacity of plant proteins can impose challenges in the design of high-quality plant-based foods. The acid used during the precipitation step of plant protein isolate extraction can influence protein functionality. Here, acetic acid and citric acid were used to extract quinoa protein isolate (QPI) from quinoa flour, as these acids are more kosmotropic than the commonly used HCl, promoting the stabilisation of the native protein structure. While proximate analysis showed that total protein was similar for the three isolates, precipitation with kosmotropic acids increased soluble protein, which correlated positively with gel strength. Microstructure analysis revealed that these gels contained a less porous protein network with lipid droplet inclusions. This study shows that the choice of precipitation acid offers an opportunity to tailor the properties of quinoa protein isolate for application, a strategy that is likely applicable to other plant protein isolates.


Assuntos
Chenopodium quinoa , Proteínas de Plantas , Chenopodium quinoa/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Solubilidade , Ácido Cítrico/química , Ácido Acético/química , Precipitação Química , Farinha/análise
16.
J Hazard Mater ; 476: 135106, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970974

RESUMO

Excessive heavy metal contaminants in soils have serious ecological and environmental impacts, and affect plant growth and crop yields. Phytoremediation is an environmentally friendly means of lowering heavy metal concentrations in soils. In this study, we analyzed phenotypic and physiological traits, and the transcriptome and metabolome, of sheepgrass (Leymus chinensis) exposed to cadmium (Cd), lead (Pb), or zinc (Zn). Phenotypic and physiological analysis indicated that sheepgrass had strong tolerance to Cd/Pb/Zn. Transcriptomic analysis revealed that phenylpropanoid biosynthesis and organic acid metabolism were enriched among differentially expressed genes, and metabolomic analysis indicated that the citrate cycle was enriched in response to Cd/Pb/Zn exposure. Genes encoding enzymes involved in the phenylpropanoid and citrate cycle pathways were up-regulated under the Cd/Pb/Zn treatments. Organic acids significantly reduced heavy metal accumulation and improved sheepgrass tolerance of heavy metals. The results suggest that synergistic interaction of the phenylpropanoid and citrate cycle pathways in sheepgrass roots induced organic acid secretion to alleviate heavy metal toxicity. A cascade of enzymes involved in the interacting pathways could be targeted in molecular design breeding to enhance phytoremediation.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Cádmio/toxicidade , Cádmio/metabolismo , Poaceae/metabolismo , Poaceae/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Zinco/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Cítrico/metabolismo
17.
J Dent ; 148: 105222, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950766

RESUMO

OBJECTIVES: To assess the impact of various organic and inorganic acids on the roughness, demineralization, and collagen secondary structures of human dentin and to compare these effects with those of traditional agents, specifically phosphoric acid (PA) and ethylenediaminetetraacetic acid (EDTA). METHODS: Coronal dentin discs (n = 10) were examined by optical profilometry (roughness) and ATR-FTIR before and after conditioning with 32 % PA, 3 % nitric acid (NA), 20 % citric acid (CA), 20 % phytic acid (IP6) or 17 % EDTA. Spectra data were processed to quantify dentin demineralization (DM%) and percentage area of amide I curve-fitted components of ß-turns, 310-helix, α-helix, random coils, ß-sheets, and collagen maturation index. Statistical analysis was performed by one-way ANOVA or Kruskal-Wallis for DM% and roughness parameters, and paired t-test/Wilcoxon test for amide I components at significance level set at α = 0.05. RESULTS: All treatments resulted in increased roughness parameters, with the most significant changes occurring primarily with PA, while EDTA exhibited the least changes. DM% was NA>PA>IP6>CA>EDTA in a descending order. Regarding amide I components, NA demonstrated a significant reduction in ß-turns, 310-helices, and α-helices and it increased ß-sheets and random coils. PA resulted in reduction in ß-turns and α-helices while it increased ß-sheets. CA and EDTA did not cause significant changes. The collagen maturation index significantly increased only after IP6 treatment. CONCLUSIONS: The effect on dentin roughness parameters, demineralization, and collagen secondary structures varied based on the type of dentin surface treatment. CLINICAL SIGNIFICANCE: Understanding the impact of acids on the intrinsic properties of dentin is clinically essential for gaining insights into how these effects influence adhesion to dentin, the long-term stability of resin-based restorations, and the success of remineralization therapies.


Assuntos
Ácido Cítrico , Colágeno , Dentina , Ácido Edético , Ácidos Fosfóricos , Propriedades de Superfície , Desmineralização do Dente , Dentina/efeitos dos fármacos , Humanos , Ácido Edético/farmacologia , Ácido Edético/química , Ácido Cítrico/farmacologia , Ácido Cítrico/química , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Fítico/farmacologia , Ácido Fítico/química , Estrutura Secundária de Proteína , Condicionamento Ácido do Dente , Teste de Materiais , Conformação Proteica em alfa-Hélice
18.
Ecotoxicol Environ Saf ; 282: 116716, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018734

RESUMO

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of 13CH4 and incubation under anaerobic conditions. The results showed that LMWOAs inhibited the M-AsR process and reduced the As(III) concentration in soil porewater by 35.1-65.7 % after 14 days of incubation. Among the LMWOAs, acetic acid exhibited the strongest inhibition, followed by oxalic and citric acid. Moreover, LMWOAs significantly altered the concentrations of ferrous iron and dissolved organic carbon in the soil porewater, consequently impacting the release of As in the soil. The results of qPCR and sequencing analysis indicated that LMWOAs inhibited the M-AsR process by simultaneously suppressing microbes associated with ANME-2d and arrA. Our findings provide a theoretical basis for modulating the M-AsR process and enhance our understanding of the biogeochemical cycling of As in paddy soils under rhizosphere conditions.


Assuntos
Arseniatos , Metano , Oryza , Ácido Oxálico , Oxirredução , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/química , Metano/química , Arseniatos/química , Ácido Oxálico/química , Solo/química , Ácido Acético/química , Ácido Cítrico/química , Peso Molecular
19.
Environ Geochem Health ; 46(8): 275, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958819

RESUMO

Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan's structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.


Assuntos
Cádmio , Quitosana , Ácido Cítrico , Poluentes do Solo , Solo , Quitosana/química , Ácido Cítrico/química , Cádmio/química , Adsorção , Poluentes do Solo/química , Solo/química , Concentração de Íons de Hidrogênio , Recuperação e Remediação Ambiental/métodos
20.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963450

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Assuntos
Benzo(a)pireno , Biodegradação Ambiental , Ácido Cítrico , Poluentes do Solo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Lacase/metabolismo , Microbiologia do Solo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...