Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542192

RESUMO

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Assuntos
Boswellia , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Boswellia/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Articulação do Joelho/patologia , Ácido Iodoacético/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Cartilagem Articular/metabolismo
2.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346525

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Assuntos
Cartilagem Articular , Ginkgolídeos , Lactonas , Osteoartrite , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condrócitos , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo
3.
J Am Nutr Assoc ; 43(1): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37224433

RESUMO

BACKGROUND AND OBJECTIVE: NXT15906F6 (TamaFlexTM) is a proprietary herbal composition containing Tamarindus indica seeds and Curcuma longa rhizome extracts. NXT15906F6 supplementation has been shown clinically effective in reducing knee joint pain and improving musculoskeletal functions in healthy and knee osteoarthritis (OA) subjects. The objective of the present study was to assess the possible molecular basis of the anti-OA efficacy of NXT15906F6 in a monosodium iodoacetate (MIA)-induced model of OA in rats. METHODS: Healthy male Sprague Dawley rats (age: 8-9 wk body weight, B.W.: 225-308 g (n = 12) were randomly assigned to one of the six groups, (a) vehicle control, (b) MIA control, (c) Celecoxib (10 mg/kg B.W.), (d) TF-30 (30 mg/kg B.W.), (e) TF-60 (60 mg/kg B.W.), and (f) TF-100 (100 mg/kg B.W.). OA was induced by an intra-articular injection of 3 mg MIA into the right hind knee joint. The animals received either Celecoxib or TF through oral gavage over 28 days. The vehicle control animals received intra-articular sterile normal saline. RESULTS: Post-treatment, NXT15906F6 groups showed significant (p < 0.05) dose-dependent pain relief as evidenced by improved body weight-bearing capacity on the right hind limb. NXT15906F6 treatment also significantly reduced the serum tumor necrosis factor-α (TNF-α, p < 0.05) and nitrite (p < 0.05) levels in a dose-dependent manner. mRNA expression analyses revealed the up-regulation of collagen type-II (COL2A1) and down-regulation of matrix metalloproteinases (MMP-3, MMP-9 and MMP-13) in the cartilage tissues of NXT15906F6-supplemented rats. Cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) protein expressions were down-regulated. Decreased immunolocalization of NF-κß (p65) was observed in the joint tissues of NXT15906F6-supplemented rats. Furthermore, microscopic observations revealed that NXT15906F6 preserved MIA-induced rats' joint architecture and integrity. CONCLUSION: NXT15906F6 reduces MIA-induced joint pain, inflammation, and cartilage degradation in rats.


Assuntos
Osteoartrite , Tamarindus , Humanos , Ratos , Masculino , Animais , Criança , Ácido Iodoacético/efeitos adversos , Osteoartrite/induzido quimicamente , Celecoxib/efeitos adversos , Curcuma , Ratos Sprague-Dawley , Modelos Animais de Doenças , Dor/tratamento farmacológico , Inflamação/induzido quimicamente , Artralgia/tratamento farmacológico , Fator de Necrose Tumoral alfa/efeitos adversos
4.
Biomed Pharmacother ; 170: 115998, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091638

RESUMO

Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.


Assuntos
Osteoartrite , Osteoporose , Tocotrienóis , Humanos , Ratos , Feminino , Masculino , Animais , Lactente , Tocotrienóis/farmacologia , Tocotrienóis/uso terapêutico , Ratos Sprague-Dawley , Ácido Iodoacético/efeitos adversos , Azeite de Oliva , Osteoporose/patologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Vitamina E/uso terapêutico , Ovariectomia
5.
Biomed Pharmacother ; 170: 115975, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070246

RESUMO

Osteoarthritis (OA) is characterized by gradual articular cartilage degradation, accompanied by persistent low-grade joint inflammation, correlating with radiographic and pain-related progression. The latent therapeutic potential of DZ2002, a reversible inhibitor of S-adenosyl-L-homocysteine hydrolase (SAHH), holds promise for OA intervention. This study endeavored to examine the therapeutic efficacy of DZ2002 within the milieu of OA. The cytotoxicity of DZ2002 was evaluated using the MTT assay on bone marrow-derived macrophages. The inhibitory impact of DZ2002 during the process of osteoclastogenesis was assessed using TRAP staining, analysis of bone resorption pits, and F-actin ring formation. Mechanistic insights were derived from qPCR and Western blot analyses. Through the intra-articular injection of monosodium iodoacetate (MIA), an experimental rat model of OA was successfully instituted. This was subsequently accompanied by a series of assessments including Von Frey filament testing, analysis of weight-bearing behaviors, and micro-CT imaging, all aimed at assessing the effectiveness of DZ2002. The findings emphasized the effectiveness of DZ2002 in mitigating osteoclastogenesis induced by M-CSF/RANKL, evident through a reduction in TRAP-positive OCs and bone resorption. Moreover, DZ2002 modulated bone resorption-associated gene and protein expression (CTSK, CTR, Integrin ß3) via the MEK/ERK pathway. Encouragingly, DZ2002 also alleviates MIA-induced pain, cartilage degradation, and bone loss. In conclusion, DZ2002 emerges as a potential therapeutic contender for OA, as evidenced by its capacity to hinder in vitro M-CSF/RANKL-induced osteoclastogenesis and mitigate in vivo osteoarthritis progression. This newfound perspective provides substantial support for considering DZ2002 as a compelling agent for osteoarthritis intervention.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Ratos , Animais , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Cartilagem Articular/metabolismo , Reabsorção Óssea/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Animais de Doenças
6.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958960

RESUMO

In present study, icariin (ICA)/tannic acid (TA)-nanodiamonds (NDs) were prepared as follows. ICA was anchored to ND surfaces with absorbed TA (ICA/TA-NDs) and we evaluated their in vitro anti-inflammatory effects on lipopolysaccharide (LPS)-activated macrophages and in vivo cartilage protective effects on a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA). The ICA/TA-NDs showed prolonged release of ICA from the NDs for up to 28 days in a sustained manner. ICA/TA-NDs inhibited the mRNA levels of pro-inflammatory elements, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and increased the mRNA levels of anti-inflammatory factors (i.e., IL-4 and IL-10) in LPS-activated RAW 264.7 macrophages. Animal studies exhibited that intra-articular injection of ICA/TA-NDs notably suppressed levels of IL-6, MMP-3, and TNF-α and induced level of IL-10 in serum of MIA-induced OA rat models in a dose-dependent manner. Furthermore, these noticeable anti-inflammatory effects of ICA/TA-NDs remarkably contributed to the protection of the progression of MIA-induced OA and cartilage degradation, as exhibited by micro-computed tomography (micro-CT), gross findings, and histological investigations. Accordingly, in vitro and in vivo findings suggest that the prolonged ICA delivery of ICA/TA-NDs possesses an excellent latent to improve inflammation as well as defend against cartilage disorder in OA.


Assuntos
Cartilagem Articular , Nanodiamantes , Osteoartrite , Ratos , Animais , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microtomografia por Raio-X , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Anti-Inflamatórios/farmacologia , Ácido Iodoacético/efeitos adversos , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
7.
Biomed Pharmacother ; 166: 115309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573656

RESUMO

Osteoarthritis (OA) is a common debilitating degenerative disease of the elderly. We aimed to study the therapeutic effects of combining curcumin and swimming in monosodium iodoacetate (MIA)-induced OA in a rat model. The rats were divided into 5 groups (n = 9). Group 1 received saline and served as a control group. Groups 2-5 were injected intra-articularly in the right knee with 100 µL MIA. One week later, groups 3 and 5 were started on daily swimming sessions that gradually increased to 20-mins per session, and for groups 4 and 5, oral curcumin was administered at a dose of 200 mg/kg for 4 weeks. The combination therapy (curcumin + swimming) showed the most effective results in alleviating pain and joint stiffness as well as improving histological and radiological osteoarthritis manifestations in the knee joints. The combination modality also reduced serum C-reactive protein and tissue cartilage oligomeric matrix protein levels. Mechanistically, rats received dual treatment exhibited restoration of miR-130a and HDAC3 expression. The dual treatment also upregulated PPAR-γ alongside downregulation of NF-κB and its inflammatory cytokine targets TNF-α and IL-1ß. Additionally, there was downregulation of MMP1 and MMP13 in the treated rats. In conclusion, our data showed that there is a therapeutic potential for combining curcumin with swimming in OA, which is attributed, at least in part, to the modulation of miR-130a/HDAC3/PPAR-γ signaling axis.


Assuntos
Cartilagem Articular , Curcumina , MicroRNAs , Osteoartrite , Ratos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Natação , Cartilagem Articular/metabolismo , Modelos Animais de Doenças , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , MicroRNAs/metabolismo
8.
PLoS One ; 18(8): e0289765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561757

RESUMO

We investigated the effect of regular walking exercise prior to knee osteoarthritis (OA) on pain and synovitis in a rat monoiodoacetic acid (MIA)-induced knee OA model. Seventy-one male Wistar rats were divided into three groups: (i) Sedentary + OA, (ii) Exercise + OA, and (iii) Sedentary + Sham groups. The Exercise + OA group underwent a regular treadmill walking exercise at 10 m/min (60 min/day, 5 days/week) for 6 weeks, followed by a 2-mg MIA injection in the right knee. The right knee joint was removed from rats in this group at the end of the 6-week exercise period and at 1 and 6 weeks after the MIA injection. After the 6 weeks of treadmill exercise but before MIA injection, there were no significant differences among the three groups in the pressure pain threshold, whereas at 1 week post-injection, the Exercise + OA group's pressure pain threshold was significantly higher than that in the Sedentary + OA group, and this difference persisted until the end of the experimental period. The histological changes in articular cartilage and subchondral bone revealed by toluidine blue staining showed no difference between the Sedentary + OA and EX + OA groups. The expression levels of interleukin (IL)-4 and IL-10 mRNA in the infrapatellar fat pad and synovium were significantly increased by the treadmill exercise. Significant reductions in the number of CD68-, CD11c-positive cells and IL-1ß mRNA expression and an increase in the number of CD206-positive cells were observed at 1 week after the MIA injection in the Exercise + OA group compared to the Sedentary + OA group. These results suggest that regular walking exercise prior to the development of OA could alleviate joint pain through increases in the expressions of anti-inflammatory cytokines in the rat infrapatellar fat pad and synovium.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Ratos , Masculino , Animais , Osteoartrite do Joelho/patologia , Ratos Wistar , Artralgia/terapia , Artralgia/induzido quimicamente , Ácido Iodoacético/efeitos adversos , Modelos Animais de Doenças , Articulação do Joelho/patologia , Cartilagem Articular/patologia , Caminhada , RNA Mensageiro/metabolismo
9.
PLoS One ; 18(6): e0286456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352198

RESUMO

Osteoarthritis (OA), the most common form of arthritis, is characterized by pain and cartilage damage; it usually exhibits gradual development. However, the pathogenesis of OA remains unclear. This study was undertaken to improve the understanding and treatment of OA. OA was induced in 7-week-old Wistar rats by intra-articular injection of monosodium iodoacetate (MIA); subsequently, the rats underwent oral administration of Bifidobacterium longum BORI (B. BORI). The effects of B. BORI were examined in chondrocytes and an MIA-induced OA rat model. In the rats, B. BORI-mediated effects on pain severity, cartilage destruction, and inflammation were recorded. Additional effects on mRNA and cytokine secretion were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Paw withdrawal threshold, paw withdrawal latency, and weight-bearing assessments revealed that pain severity in MIA-induced OA rats was decreased after B. BORI treatment. Histopathology analyses and three-dimensional surface renderings of rat femurs from micro-computed tomography images revealed cartilage protection and cartilage loss inhibition effects in B. BORI-treated OA rats. Immunohistochemical analyses of inflammatory cytokines and catabolic markers (e.g., matrix metalloproteinases) showed that the expression levels of both were reduced in tissue from B. BORI-treated OA rats. Furthermore, B. BORI treatment decreased the expression levels of the inflammatory cytokine monocyte chemoattractant protein-1 and inflammatory gene factors (e.g., inflammatory cell death markers) in chondrocytes. The findings indicate that oral administration of B. BORI has therapeutic potential in terms of reducing pain, progression, and inflammation in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Ratos Wistar , Microtomografia por Raio-X , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Dor/patologia , Inflamação/patologia , Ácido Iodoacético/efeitos adversos , Citocinas/metabolismo
10.
J Equine Vet Sci ; 127: 104564, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209789

RESUMO

Persistent synovitis damages the articular cartilage in horses. To evaluate the effectiveness of treatment for synovitis using a model induced by intra-articular administration of monoiodoacetic acid (MIA), it is necessary to identify inflammatory biomarkers characteristic of the MIA model. Synovitis was induced by administering MIA into the unilateral antebrachiocarpal joints of five horses, and saline was injected into the contralateral joints as a control on day 0. Clinical and ultrasonographic examinations and synovial fluid collection were performed on days 0, 1, 2, 7, 14, 21, 28, and 35. Leukocyte, lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), and transforming growth factor-ß1 (TGF-ß1) concentrations in the synovial fluid were measured. Synovium was obtained after euthanasia on day 42 and histologically examined before quantification of the gene expression of inflammatory biomarkers by real-time PCR. Acute inflammatory symptoms persisted for approximately 2 weeks before returning to control levels. However, some indicators of chronic inflammation remained elevated until day 35. On day 42, synovitis continued histologically, with osteoclasts. The expressions of matrix metalloproteinase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), receptor activator of nuclear factor kappa-Β ligand (RANKL), and collagen type I α2 chain (Col1a2) were significantly higher in the MIA model than in the control. In the MIA model, representative inflammatory biomarkers in the chronic inflammatory stage were persistently expressed in both synovial fluid and tissue, suggesting that they may be useful for the assessment of the anti-inflammatory effect of drugs.


Assuntos
Doenças dos Cavalos , Sinovite , Cavalos , Animais , Ácido Iodoacético/efeitos adversos , Sinovite/induzido quimicamente , Sinovite/tratamento farmacológico , Sinovite/metabolismo , Sinovite/veterinária , Colágeno Tipo I/efeitos adversos , Biomarcadores , Doenças dos Cavalos/induzido quimicamente , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/metabolismo
11.
Phytomedicine ; 115: 154851, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149963

RESUMO

BACKGROUND: The activation of P2Y14 receptor (P2Y14R) promotes osteoclast formation and causes neuropathic pain, exhibiting possible link to osteoarthritis (OA). Given lack of P2Y14R antagonist, the present study aims to search a novel P2Y14R antagonist with low toxicity and high activity from natural products as a possible drug candidate in treatment of OA. METHODS: The role of P2Y14R on OA was verified using P2Y14R knockout (KO) rats. Molecular docking virtual screening strategy and activity test in P2Y14R stably-expressed HEK293 cells were used to screen target compound from natural product library. The MM/GBSA free energy calculation/decomposition technique was used to determine the principal interaction mechanism. Next, the binding of target compound to P2Y14R was examined using cellular thermal shift assay and drug affinity responsive target stability test. Finally, the therapeutic effect of target compound was performed in monosodium iodoacetate (MIA)-induced OA mouse model. To verify whether the effect of target compound was attributed to P2Y14R, we establish the osteoarthritis model in P2Y14R KO mice to perform pharmacodynamic evaluation. Importantly, to investigate the potential mechanism by which target compound attenuate OA, expressions of the major transcription factors involved in osteoclast differentiation were detected by western blot, while markers of nerve damage in dorsal root ganglion (DRG) were evaluated by RT-qPCR and immunofluorescence techniques. RESULTS: Deficiency of P2Y14R alleviated pain behavior and cartilage destruction in MIA-induced OA rats. 14 natural compounds were screened by Glide docking-based virtual screening, among which paederosidic acid exhibited the highest antagonistic activity to P2Y14R with IC50 of 8.287 µM. As a bioactive component extracted from Paederia scandens, paederosidic acid directly interacted with P2Y14R to enhance the thermostability and decrease the protease sensitivity of target protein, which significantly inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis. More importantly, paederosidic acid suppressed osteoclast formation by downregulating expressions of NFAT2 and ATP6V0D2, as well as relieved neuropathic pain by decreasing expressions of CGRP, CSF1 and galanin in DRG. CONCLUSIONS: Paederosidic acid targeted P2Y14R to improve OA through alleviating osteoclast formation and neuropathic pain, which provided an available strategy for developing novel drug leads for treatment of OA.


Assuntos
Neuralgia , Osteoartrite , Camundongos , Ratos , Humanos , Animais , Simulação de Acoplamento Molecular , Células HEK293 , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ácido Iodoacético/efeitos adversos
12.
J Ethnopharmacol ; 311: 116476, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031825

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shang-Ke-Huang-Shui (SKHS) is a classic traditional Chinese medicine formula originally from the southern China city of Foshan. It has been widely used in the treatment of osteoarthritis (OA) but underlying molecular mechanisms remain unclear. AIM OF STUDY: Recently, activation of C-X-C chemokine receptor type 4 (CXCR4) signaling has been reported to induce cartilage degradation in OA patients; therefore, inhibition of CXCR4 signaling has becoming a promising approach for OA treatment. The aim of this study was to validate the cartilage protective effect of SKHS and test whether the anti-OA effects of SKHS depend on its inhibition on CXCR4 signaling. Additionally, CXCR4 antagonist in SKHS should be identified and its anti-OA activity should also be tested in vitro and in vivo. METHODS: The anti-OA effects of SKHS and the newly identified CXCR4 antagonist was evaluated by monosodium iodoacetate (MIA)-induced rats. The articular cartilage surface was examined by hematoxylin and eosin (H&E) staining and Safranin O-Fast Green (S-F) staining whereas the subchondral bone was examined by micro-CT. CXCR4 antagonist screenings were conducted by molecular docking and calcium response assay. The CXCR4 antagonist was characterized by UPLC/MS/MS. The bulk RNA-Seq was conducted to identify CXCR4-mediated signaling pathway. The expression of ADAMTS4,5 was tested by qPCR and Western blot. RESULTS: SKHS protected rats from MIA-induced cartilage degradation and subchondral bone damage. SKHS also inhibited CXCL12-indcued ADAMTS4,5 overexpression in chondrocytes through inhibiting Akt pathway. Coptisine has been identified as the most potent CXCR4 antagonist in SKHS. Coptisine reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes. Furthermore, in MIA-induced OA model, the repaired cartilage and subchondral bone were observed in the coptisine-treated rats. CONCLUSION: We first report here that the traditional Chinese medicine formula SKHS and its predominate phytochemical coptisine significantly alleviated cartilage degradation as well as subchondral bone damage through inhibiting CXCR4-mediated ADAMTS4,5 overexpression. Together, our work has provided an important insight of the molecular mechanism of SKHS and coptisine for their treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Ratos , Animais , Ácido Iodoacético/efeitos adversos , Ácido Iodoacético/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Condrócitos , Transdução de Sinais , Osteoartrite do Joelho/metabolismo , Receptores CXCR4/metabolismo
13.
J Orthop Res ; 41(11): 2359-2366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36959767

RESUMO

The rat mono-iodoacetate (MIA) arthritis model has been used in studies on the hip, knee, and ankle joints. Few studies have explored its utility in shoulder arthritis research, and none have evaluated the effects of time and different MIA doses on arthritis progression. Therefore, we developed a rat MIA shoulder arthritis model to evaluate articular changes through radiological and histological analyses. Sprague-Dawley rats (n = 108) were equally divided into groups that were intra-articularly injected with 0.5 mg of MIA (in 50 µL of purified water), 2.0 mg of MIA (in 50 µL of purified water), or purified water (50 µL; sham group). Throughout the study period, 18 rats (six per group) were evaluated by computed tomography and assessed using the Larsen's classification system; 90 rats were further evaluated histologically using the Osteoarthritis Research Society International scoring system. Computed tomography revealed that the groups injected with MIA developed arthritis and osteophytes 14 days after injection, which progressed temporally. The Larsen's grades worsened over time; at all time points, the scores were higher in the group injected with 2.0 mg of MIA than in the group injected with 0.5 mg of MIA. Furthermore, concurrent with the worsening Larsen's grades, the Osteoarthritis Research Society International scores also significantly increased over time; at all time points, they were higher in the group injected with 2.0 mg of MIA than in the group injected with 0.5 mg of MIA. Our rat MIA shoulder arthritis model revealed radiologically and histologically confirmed temporal and MIA dose-dependent arthritic changes.


Assuntos
Cartilagem Articular , Osteoartrite , Radiologia , Ratos , Animais , Ratos Sprague-Dawley , Ombro , Osteoartrite/patologia , Água , Modelos Animais de Doenças , Ácido Iodoacético/efeitos adversos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia
14.
Cartilage ; 14(1): 86-93, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628407

RESUMO

OBJECTIVE: Although most frequently used in experimental osteoarthritis (OA) pain induction, intra-articular mono-iodoacetate (MIA) injection lacks concluded references for dose selection and timing of intervention. Herein, we aimed to compare the pain intensity of rats induced by different doses of MIA and explored the trajectory of pain. DESIGN: PubMed, Embase, and Web of Science were searched up to June 2021 for literatures involving MIA experiments investigating OA pain. Pain intensity was measured based on weightbearing distribution (WBD) and paw withdrawal thresholds (PWT), and the pain trajectory was constructed by evaluating pain intensity at a series of time points after MIA injection. A conventional meta-analysis was conducted. RESULTS: A total of 140 studies were included. Compared with saline, MIA injections caused significantly higher pain intensity for WBD and PWT. Dose-response relationships between different doses of MIA and pain intensity were observed (P-for-trend<0.05). A pronounced increase in pain occurred from day 0 to day 7, but the uptrend ceased between day 7 and day 14, after which the pain intensity continued to rise and reached the maximum by day 28. CONCLUSIONS: Pain intensity after intra-articular MIA injection increased in a dose-dependent manner and the pain trajectory manifested a specific pattern consistent with the pathological mechanisms of MIA-induced pain, providing possible clues for proper dose selection and timing of specific OA pain interventions.


Assuntos
Osteoartrite , Ratos , Animais , Medição da Dor , Ácido Iodoacético/efeitos adversos , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Dor/etiologia , Injeções Intra-Articulares
15.
J Dent Res ; 101(12): 1499-1509, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689396

RESUMO

Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease without effective intervention strategies. Previous research implied that alpha-kinase 1 (ALPK1) is involved in the inflammatory responses of gout, a chronic arthritis. Herein, we found the main distribution of ALPK1 in a proliferative layer of condylar cartilage and marrow cavity of subchondral bone, as well as a lining layer of synovial tissues in human temporomandibular joint. Moreover, the expression of ALPK1 was augmented in degraded condylar cartilage of monosodium iodoacetate (MIA)-induced TMJOA mice. After MIA induction, ALPK1 knockout mice exhibited attenuated damage of cartilage and subchondral bone, as well as synovitis, as compared with wide type mice. In contrast, intra-articular administration of recombinant human ALPK1 aggravated the pathology of MIA-induced TMJOA. Furthermore, ex vivo study demonstrated that ALPK1 exacerbated chondrocyte catabolism by upregulating matrix metalloproteinase 13 and cyclooxygenase 2 by activating NF-κB (nuclear factor-kappaB) signaling and suppressed anabolism by downregulating aggrecan by inhibiting ERK1/2 (extracellular signal-regulated kinase 1/2) in articular chondrocytes. Taken together, ALPK1 exacerbates the degradation of condylar cartilage during TMJOA through the NF-κB and ERK1/2 signaling pathway. This study provides a new insight regarding the role of ALPK1 during TMJOA pathology.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , Agrecanas/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácido Iodoacético/efeitos adversos , Sistema de Sinalização das MAP Quinases , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Articulação Temporomandibular/metabolismo
16.
Biomed Pharmacother ; 151: 113052, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588576

RESUMO

Osteoarthritis (OA) is a musculoskeletal disorder mainly found in elderly individuals. Modern treatment of OA, like nonsteroidal anti-inflammatory drugs, corticosteroids, hyaluronic acid injections, etc., is linked to long-term side effects. We evaluated the anti-osteoarthritic properties of a novel joint health formula (JHF) containing Bisdemethoxycurcumin enriched curcumin, 3-O-Acetyl-11-keto-beta-Boswellic acid-enriched Boswellia, and Ashwagandha in monosodium iodoacetate (MIA)-induced knee OA in rats. Twenty-eight female rats were distributed into four groups: Control, OA, OA + JHF (100 mg/kg), and OA + JHF (200 mg/kg). JHF decreased the right joint diameters but increased the paw area and stride length compared to the OA group with no treatment. JHF significantly reduced the arthritic conditions after four weeks of supplementation (p < 0.05). JHF significantly decreased TNF-α, IL-1ß, IL-10, COMP, and CRP in the serum of osteoarthritic rats (p < 0.0001). We observed reduced lipid peroxidation but increased SOD, GSH-Px, and CAT activities in response to JHF treatment in OA animals. JHF down-regulated MMP-3, COX-2, and LOX-5 and improved the histological structure of the knee joint of osteoarthritic rats. JHF demonstrated a protective effect against osteoarthritis, possibly due to anti-inflammatory and antioxidant activity in experimentally induced osteoarthritis in rats, and could be an effective option in the management of OA.


Assuntos
Osteoartrite do Joelho , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Feminino , Ácido Iodoacético/efeitos adversos , Articulação do Joelho , Osteoartrite do Joelho/patologia , Ratos
17.
Arch Pharm (Weinheim) ; 355(7): e2200028, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35385163

RESUMO

The potential of the fruit peels of mango, orange, cantaloupe, and pomegranate in the treatment of osteoarthritis (OA) was evaluated in a rat model. Their metabolic profiles were characterized using ultrahigh-performance liquid chromatography (UPLC)-electrospray ionization-mass spectroscopy and 66 albino rats were intra-articularly injected with monosodium iodoacetate in the knee joints. The extracts were orally administered at doses of 200 and 400 mg/kg for 28 days. Serum levels of IL-6 and tissue levels of cyclooxygenase-2 (COX-2), peroxisome proliferator-activated receptor-gamma (PPARγ), and alpha-smooth muscle actin (α-SMA) were measured using ELISA. COL1A1 expression was measured by quantitative polymerase chain reaction. Histopathological changes in the joints were examined. In the extracts, 85 metabolites were annotated, and the levels of interleukin (IL)-6, COX-2, α-SMA, malondialdehyde, and nitric oxide were significantly reduced, while PPARγ and glutathione levels were significantly raised in all treated groups compared to the OA group. All extracts downregulated the cartilage mRNA expressions for COL1A1 dose-dependently. Mango peel extract exhibited the best chondroprotective effect. The in silico study showed the link between mango extract metabolites and COX-2.


Assuntos
Frutas , Osteoartrite , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Frutas/metabolismo , Ácido Iodoacético/efeitos adversos , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Extratos Vegetais/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Relação Estrutura-Atividade , Ratos
18.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834085

RESUMO

Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 µL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-ß1 (TGF-ß1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-ß1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.


Assuntos
Óxidos N-Cíclicos/farmacologia , Ácido Iodoacético/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Osteoartrite do Joelho , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Ácido Iodoacético/farmacologia , Masculino , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Ratos , Ratos Wistar , Marcadores de Spin
19.
PLoS One ; 16(10): e0258762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34679084

RESUMO

Inflammatory microenvironment after transplantation affects the proliferation and causes senescence of adipose-derived mesenchymal stem cells (hADMSCs) thus compromising their clinical efficacy. Priming stem cells with herbal extracts is considered very promising to improve their viability in the inflammatory milieu. Aesculus indica (A. indica) is used to treat many inflammatory diseases in Asia for decades. Herein, we explored the protective role of A. indica extract on human adipose-derived Mesenchymal Stem Cells (hADMSCs) against Monosodium Iodoacetate (MIA) induced stress in vitro. A. indica ameliorated the injury as depicted by significantly enhanced proliferation, viability, improved cell migration and superoxide dismutase activity. Furthermore, reduced lactate dehydrogenase activity, reactive oxygen species release, senescent and apoptotic cells were detected in A. indica primed hADMSCs. Downregulation of NF-κB pathway and associated inflammatory genes, NF-κB p65/RelA and p50/NF-κB 1, Interleukin 6 (IL-6), Interleukin 1 (IL-1ß), Tumor necrosis factor alpha (TNF-α) and matrix metalloproteinase 13 (MMP-13) were observed in A. indica primed hADMSCs as compared to stressed hADMSCs. Complementary to gene expression, A. indica priming reduced the release of transcription factor p65, inhibitory-κB kinase (IKK) α and ß, IL-1ß and TNF-α proteins expression. Our data elucidates that A. indica extract preconditioning rescued hADMSCs against oxidative stress and improved their therapeutic potential by relieving inflammation through regulation of NF-κB pathway.


Assuntos
Aesculus/química , Anti-Inflamatórios/farmacologia , Ácido Iodoacético/efeitos adversos , Células-Tronco Mesenquimais/citologia , NF-kappa B/metabolismo , Compostos Fitoquímicos/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Anti-Inflamatórios/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/análise , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
20.
Cartilage ; 13(2_suppl): 1134S-1143S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34528494

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a degenerative disease that causes serious damage to joints, especially in elderly patients. The aim of study was to demonstrate the effectiveness of intraarticular therapies that are currently used or recently popularized in the treatment of OA. DESIGN: The baseline values were determined by walking the rats on the CatWalk system. Afterwards, a monosodium iodoacetate (MIA)-induced knee OA model was created with intraarticular MIA, and the rats were walked again on the CatWalk system and post-OA values were recorded. At this stage, the rats were divided into 4 groups, and intraarticular astaxanthin, intraarticular corticosteroid, intraarticular hyaluronic acid, and intraarticular astaxanthin + hyaluronic acid were applied to the groups, respectively. The rats were walked once more and posttreatment values were obtained. Nine different dynamic gait parameters were used in the comparison. RESULTS: Significant changes were measured in 6 of the 9 dynamic gait parameters after the MIA-induced knee OA model. While the best improvement was observed in run duration (P = 0.0022), stride length (P < 0.0001), and swing speed (P = 0.0355) in the astaxanthin group, the results closest to basal values in paw print length (P < 0.0001), paw print width (P = 0.0101), and paw print area (P = 0.0277) were seen in the astaxanthin + hyaluronic acid group. CONCLUSION: Astaxanthin gave better outcomes than corticosteroid and hyaluronic acid in both dynamic gait parameters and histological examinations. Intraarticular astaxanthin therapy can be a good alternative to corticosteroid and hyaluronic acid currently used in intraarticular therapy to treat OA.


Assuntos
Análise da Marcha , Osteoartrite do Joelho , Idoso , Animais , Humanos , Ácido Hialurônico , Injeções Intra-Articulares , Ácido Iodoacético/efeitos adversos , Osteoartrite do Joelho/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...