Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
1.
Bioresour Technol ; 406: 131061, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960005

RESUMO

Starch is an attractive feedstock in biorefinery processes, while the low natural conversion rate of most microorganisms limits its applications. Herein, starch metabolic pathway was systematically investigated using Bacillus licheniformis DW2 as the host organism. Initially, the effects of overexpressing amylolytic enzymes on starch hydrolysis were evaluated. Subsequently, the transmembrane transport system and intracellular degradation module were modified to accelerate the uptake of hydrolysates and their further conversion to glucose-6-phosphate. The DW2-derived strains exhibited robust growth in starch medium, and productivity of bacitracin and subtilisin were improved by 38.5% and 32.6%, with an 32.3% and 22.9% increase of starch conversion rate, respectively. Lastly, the employment of engineering strategies enabled another B. licheniformis WX-02 to produce poly-γ-glutamic acid from starch with a 2.1-fold increase of starch conversion rate. This study not only provided excellent B. licheniformis chassis for sustainable bioproduction from starch, but shed light on researches of substrate utilization.


Assuntos
Bacillus licheniformis , Amido , Amido/metabolismo , Bacillus licheniformis/metabolismo , Hidrólise , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Microbiologia Industrial/métodos
2.
Food Res Int ; 190: 114655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945588

RESUMO

Kinema, a traditional fermented soybean food from the Himalayas, is well-liked for its sticky texture and flavourful umami taste. Among 175 bacterial strains from spontaneously fermented kinema samples, Bacillus subtilis Tamang strain stood out for its high stickiness and viscosity. The strain's Poly-γ-glutamic acid (γ-PGA) contains various groups of glutamic acid and has a molecular weight of 660 kDa. It demonstrates the ability to solubilize iron, preserve ferritin in Caco-2 cells, and exhibit antibacterial properties. The genome of B. subtilis Tamang is devoid of plasmid elements but does feature nine insert elements. Noteworthy is the presence of unique secondary metabolites with potential antimicrobial effects, such as amyloliquecidin GF610, bogorol A, and thermoactinoamide A. A total of 132 carbohydrate-active enzymes (CAZy) were identified, hinting at possible prebiotic characteristics. The genome analysis revealed genes responsible for γ-PGA production via the capBCA complex. Furthermore, genes associated with fibrinolytic activity, taste enhancement, biopeptides, immunomodulators, and vitamins like B12 and K2 were found, along with probiotics and various health benefits. The genetic material for L-asparaginase production, known for its anti-cancer properties, was also detected, as well as CRISPR-Cas systems. The absence of virulence factors and antimicrobial resistance genes confirms the safety of consuming B. subtilis Tamang as a food-grade bacterium.


Assuntos
Bacillus subtilis , Fermentação , Genoma Bacteriano , Ácido Poliglutâmico , Sequenciamento Completo do Genoma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Células CACO-2 , Humanos , Microbiologia de Alimentos , Alimentos Fermentados/microbiologia , Alimentos de Soja/microbiologia , Antibacterianos/farmacologia
3.
Biomacromolecules ; 25(7): 4095-4109, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850240

RESUMO

Polymer-homopolypeptide block copolymers are a class of bioinspired materials that combine the processability and stability of synthetic polymers with the biocompatibility and unique secondary structures of peptides, such as α-helices and ß-sheets. These properties make them ideal candidates for a wide variety of applications, for example, in the pharmaceutical field, where they are frequently explored as building blocks for polymeric micelle drug delivery systems. While homopolypeptide side chains can be furnished with an array of different moieties to impart the copolymers with desirable properties, such as stimulus responsivity, pyridine derivatives represent an underutilized functional group for this purpose. Additionally, the interplay between polypeptide side chain structure, secondary conformation, and micelle morphology is not yet well understood, particularly in the case of structural regioisomers. Therefore, in this work, a series of polymer-homopolypeptide copolymers were prepared from a poly(ethylene glycol)-b-poly(glutamic acid) (PEG-b-PGA) backbone, where the pendant carboxylic acid groups were covalently conjugated to a series of pyridine regioisomers by carbodiimide coupling. These pyridine regioisomers differed only in the position of the nitrogen heteroatom, ortho, meta or para, relative to the linking group, generating a series of PEG-b-poly(pyridinylmethyl glutamate) (PEG-b-PMG) copolymers. Following self-assembly of the copolymers in aqueous solutions, dynamic light scattering (DLS) revealed differences in micelle hydrodynamic diameter (Dh) (ranging from ∼60 to 120 nm), while transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealed distinctive morphologies ranging from ellipsoidal, to cylindrical, and disc-like, suggesting that subtle changes in positional isomers in the polypeptide block may influence the micelle structure. Analysis of the PEG-b-PMG copolymer micelles by circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that differences in the morphology were associated with changes in polypeptide secondary structure, which in turn was influenced by the position of the pyridine heteroatom. Overall, these findings contribute to the broader understanding of the relationship between polypeptide structure and micelle morphology and serve as useful insight for the rational design of polymer-polypeptide nanoparticles.


Assuntos
Micelas , Piridinas , Piridinas/química , Polietilenoglicóis/química , Peptídeos/química , Estrutura Secundária de Proteína , Estereoisomerismo , Isomerismo , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Polímeros/química
4.
ACS Biomater Sci Eng ; 10(7): 4245-4258, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38865608

RESUMO

Most hydrogels have poor mechanical properties, severely limiting their potential applications, and numerous approaches have been introduced to fabricate more robust and durable examples. However, these systems consist of nonbiodegradable polymers which limit their application in tissue engineering. Herein, we focus on the fabrication and investigate the influence of hydrophobic segments on ionic cross-linking properties for the construction of a tough, biodegradable hydrogel. A biodegradable, poly(γ-glutamic acid) polymer conjugated with a hydrophobic amino acid, l-phenylalanine ethyl ester (Phe), together with an ionic cross-linking group, alendronic acid (Aln) resulting in γ-PGA-Aln-Phe, was initially synthesized. Rheological assessments through time sweep oscillation testing revealed that the presence of hydrophobic domains accelerated gelation. Comparing gels with and without hydrophobic domains, the compressive strength of γ-PGA-Aln-Phe was found to be six times higher and exhibited longer stability properties in ethylenediaminetetraacetic acid solution, lasting for up to a month. Significantly, the contribution of the hydrophobic domains to the mechanical strength and stability of ionic cross-linking properties of the gel was found to be the dominant factor for the fabrication of a tough hydrogel. As a result, this study provides a new strategy for mechanical enhancement and preserves ionic cross-linked sites by the addition of hydrophobic domains. The development of tough, biodegradable hydrogels reported herein will open up new possibilities for applications in the field of biomaterials.


Assuntos
Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Hidrogéis/química , Hidrogéis/síntese química , Reagentes de Ligações Cruzadas/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Reologia , Força Compressiva , Íons/química , Materiais Biocompatíveis/química , Fenilalanina/química , Fenilalanina/análogos & derivados
5.
Int J Biol Macromol ; 273(Pt 2): 133179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880448

RESUMO

Drought stress is the main factor restricting maize yield. Poly-γ-glutamic acid (γ-PGA), as a water-retaining agent and fertilizer synergist, could significantly improve the drought resistance and yield of many crops. However, its high production costs and unclear long-term impact on soil ecology limit its large-scale application. In this study, an environmentally friendly green material γ-PGA was heterologous synthesized in maize for the first time using the synthetic biology method. The genes (PgsA, PgsB, PgsC) participated in γ-PGA synthesis were cloned from Bacillus licheniformis and transformed into maize to produce γ-PGA for the first time. Under drought stress, transgenic maize significantly increased the ear length, ear weight and grain weight by 50 % compared to the control, whereas the yield characteristic of ear weight, grain number per ear, grain weight per ear and 100-grain weight increased by 1.67 %-2.33 %, 3.78 %-13.06 %, 8.41 %-22.06 %, 6.03 %-19.28 %, and 11.85 %-18.36 %, respectively under normal growth conditions. γ-PGA was mainly expressed in the mesophyll cells of maize leaf rosette structure and improved drought resistance and yield by protecting and increasing the expression of genes for the photosynthetic and carbon fixation. This study is an important exploration for maize drought stress molecular breeding and building resource-saving agriculture.


Assuntos
Secas , Plantas Geneticamente Modificadas , Ácido Poliglutâmico , Zea mays , Zea mays/genética , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Folhas de Planta/genética , Resistência à Seca
6.
Sci Total Environ ; 944: 173707, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866170

RESUMO

Farmland mercury (Hg) pollution poses a significant threat to human health, but there is a lack of highly efficient phytoextraction for its remediation at present. This study investigates the impact of poly-γ-glutamic acid (γ-PGA) on the phytoextraction capabilities of Pennisetum giganteum (P. giganteum) in Hg-contaminated soil. Our research indicates that amending γ-PGA to soil markedly enhances the assimilation of soil Hg by P. giganteum and transformation of Hg within itself, with observed increases in Hg concentrations in roots, stems, and leaves by 1.1, 4.3, and 18.9 times, respectively, compared to the control. This enhancement is attributed to that γ-PGA can facilitate the hydrophilic and bioavailable of soil Hg. Besides, γ-PGA can stimulate the abundance of Hg-resistance bacteria Proteobacteria in the rhizosphere of P. giganteum, thus increasing the mobility and uptake of soil Hg by P. giganteum roots. Moreover, the hydrophilic nature of Hg-γ-PGA complexes supports their transport via the apoplastic pathway, across the epidermis, and through the Casparian strip, eventually leading to immobilization in the mesophyll tissues. This study provides novel insights into the mechanisms of Hg phytoextraction, demonstrating that γ-PGA significantly enhances the effectiveness of P. giganteum in Hg uptake and translocation. The findings suggest a promising approach for the remediation of Hg-contaminated soil, offering a sustainable and efficient strategy for environmental management and health risk mitigation.


Assuntos
Biodegradação Ambiental , Mercúrio , Pennisetum , Ácido Poliglutâmico , Poluentes do Solo , Poluentes do Solo/metabolismo , Mercúrio/metabolismo , Pennisetum/metabolismo , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Solo/química
7.
PLoS One ; 19(6): e0302663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833640

RESUMO

BACKGROUND AND PURPOSE: Clinical studies showed that prolonged infusion of methotrexate (MTX) leads to more severe adverse reactions than short infusion of MTX at the same dose. We hypothesized that it is the saturation of folate polyglutamate synthetase (FPGS) at high MTX concentration that limits the intracellular synthesis rate of methotrexate polyglutamate (MTX-PG). Due to a similar accumulation rate, a longer infusion duration may increase the concentration of MTX-PG and, result in more serious adverse reactions. In this study, we validated this hypothesis. EXPERIMENTAL APPROACH: A549, BEL-7402 and MHCC97H cell lines were treated with MTX at gradient concentrations. Liquid chromatograph-mass spectrometer (UPLC-MS/MS) was used to quantify the intracellular concentration of MTX-PG and the abundance of FPGS and γ-glutamyl hydrolase (GGH). High quality data were used to fit the cell pharmacokinetic model. KEY RESULTS: Both cell growth inhibition rate and intracellular MTX-PG concentration showed a nonlinear relationship with MTX concentration. The parameter Vmax in the model, which represents the synthesis rate of MTX-PG, showed a strong correlation with the abundance of intracellular FPGS. CONCLUSION AND IMPLICATIONS: According to the model fitting results, it was confirmed that the abundance of FPGS is a decisive factor limiting the synthesis rate of MTX-PG. The proposed hypothesis was verified in this study. In addition, based on the intracellular metabolism, a reasonable explanation was provided for the correlation between the severity of adverse reactions of MTX and infusion time. This study provides a new strategy for the individualized treatment and prediction of efficacy/side effects of MTX.


Assuntos
Metotrexato , Peptídeo Sintases , Ácido Poliglutâmico , gama-Glutamil Hidrolase , Metotrexato/farmacocinética , Metotrexato/análogos & derivados , gama-Glutamil Hidrolase/metabolismo , Peptídeo Sintases/metabolismo , Humanos , Linhagem Celular Tumoral , Ácido Poliglutâmico/análogos & derivados , Espectrometria de Massas em Tandem , Proliferação de Células/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia
8.
Biomater Sci ; 12(15): 3896-3904, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38913349

RESUMO

Anionic synthetic polypeptides are promising candidates as standalone bone-targeting drug carriers. Nevertheless, the structure-property relationship of the bone-targeting ability of polypeptides remains largely unexplored. Herein we report the optimization of the in vitro and in vivo bone-targeting ability of poly(glutamic acid)s (PGAs) by altering their chain lengths and backbone chirality. PGA 100-mers exhibited higher hydroxyapatite affinity in vitro, but their rapid macrophage clearance limited their targeting ability. Shorter PGA was therefore favored in terms of in vivo bone targeting. Meanwhile, the backbone chirality showed less significant impact on the in vitro and in vivo targeting behavior. This study highlights the modulation of structural parameters on the bone-targeting performance of anionic polypeptides, shedding light on the future design of polypeptide-based carriers.


Assuntos
Osso e Ossos , Ácido Poliglutâmico , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Camundongos , Durapatita/química , Células RAW 264.7 , Portadores de Fármacos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
9.
Int J Biol Macromol ; 271(Pt 1): 132360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810432

RESUMO

Injectable adhesive hydrogels combining rapid gelling with robust adhesion to wet tissues are highly required for fast hemostasis in surgical and major trauma scenarios. Inspired by the cross-linking mechanism of mussel adhesion proteins, we developed a bionic double-crosslinked (BDC) hydrogel of poly (γ-glutamic acid) (PGA)/poly (N-(2-hydroxyethyl) acrylamide) (PHEA) fabricated through a combination of photo-initiated radical polymerization and hydrogen bonding cross-linking. The BDC hydrogel exhibited an ultrafast gelling process within 1 s. Its maximum adhesion strength to wet porcine skin reached 254.5 kPa (9 times higher than that of cyanoacrylate (CA) glue) and could withstand an ultrahigh burst pressure of 626.4 mmHg (24 times higher than that of CA glue). Notably, the BDC hydrogel could stop bleeding within 10 s from a rat liver incision 10 mm long and 5 mm deep. The wound treated with the BDC hydrogel healed faster than the control groups, underlining the potential for emergency rescue and wound care scenarios.


Assuntos
Hidrogéis , Ácido Poliglutâmico , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Animais , Hidrogéis/química , Ratos , Pressão , Reagentes de Ligações Cruzadas/química , Cicatrização/efeitos dos fármacos , Suínos , Acrilamidas/química
10.
Int J Pharm ; 659: 124283, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810933

RESUMO

The clinical application of 7-ethyl hydroxy-camptothecin (SN-38) maintains challenges not only due to its poor solubility and stability but also the lack of effective carriers to actively deliver SN-38 to deep tumor sites. Although SN-38-based nanomedicines could improve the solubility and stability from different aspects, the tumor targeting efficiency remains very low. Leveraging the hypoxic taxis of bifidobacteria bifidum (B. bifi) to the deep tumor area, we report SN-38-based nanomedicines-engineered bifidobacterial complexes for effective tumor-targeted delivery. Firstly, SN-38 was covalently coupled with poly-L-glutamic acid (L-PGA) and obtained soluble polymeric prodrug L-PGA-SN38 to improve its solubility and stability. To prolong the drug release, L-PGA-SN38 was mildly complexed with chitosan to form nanomedicines, and nanomedicines engineered B. bifi were further elaborated via electrostatic interaction of the excess of cationic chitosan shell from nanomedicines and anionic teichoic acid from B. bifi. The engineered B. bifi complexes inherited the bioactivity of native B. bifi and exhibited distinctly enhanced accumulation at the tumor site. More importantly, significantly elevated anti-tumor efficacy was achieved after the treatment of CS-L-PGA-SN38 NPs/B. bifi complexes, with favorable tumor suppression up to 80%. Such a B. bifi-mediated delivery system offers a promising platform for effective drug delivery and enhanced drug accumulation in the hypoxia deep tumor with superior anti-tumor efficacy.


Assuntos
Quitosana , Neoplasias Colorretais , Irinotecano , Nanomedicina , Ácido Poliglutâmico , Irinotecano/administração & dosagem , Irinotecano/farmacologia , Quitosana/química , Neoplasias Colorretais/tratamento farmacológico , Animais , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Humanos , Nanomedicina/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Camundongos , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Bifidobacterium bifidum , Camundongos Nus , Feminino
11.
Nanoscale ; 16(21): 10448-10457, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38752569

RESUMO

With continuous advances in medical technology, non-invasive embolization has emerged as a minimally invasive treatment, offering new possibilities in cancer therapy. Fluorescent labeling can achieve visualization of therapeutic agents in vivo, providing technical support for precise treatment. This paper introduces a novel in situ non-invasive embolization composite material, Au NPs@(mPEG-PLGTs), created through the electrostatic combination of L-cysteine-modified gold nanoparticles (Au NPs) and methoxy polyethylene glycol amine-poly[(L-glutamic acid)-(L-tyrosine)] (mPEG-PLGTs). Experiments were undertaken to confirm the biocompatibility, degradability, stability and performance of this tumor therapy. The research results demonstrated a reduction in tumor size as early as the fifth day after the initial injection, with a significant 90% shrinkage in tumor volume observed after a 20-day treatment cycle, successfully inhibiting tumor growth and exhibiting excellent anti-tumor effects. Utilizing near-infrared in vivo imaging, Au NPs@(mPEG-PLGTs) displayed effective fluorescence tracking within the bodies of nude BALB-c mice. This study provides a novel direction for the further development and innovation of in situ non-invasive embolization in the field, highlighting its potential for rapid, significant therapeutic effects with minimal invasiveness and enhanced safety.


Assuntos
Ouro , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis , Ouro/química , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Embolização Terapêutica , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados
12.
J Colloid Interface Sci ; 670: 486-498, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772264

RESUMO

Establishing a physical barrier between the peritoneum and the cecum is an effective method to reduce the risk of postoperative abdominal adhesions. Meloxicam (MX), a nonsteroidal anti-inflammatory drug has also been applied to prevent postoperative adhesions. However, its poor water solubility has led to low bioavailability. Herein, we developed an injectable hydrogel as a barrier and drug carrier for simultaneous postoperative adhesion prevention and treatment. A third-generation polyamide-amine dendrimer (G3) was exploited to dynamically combine with MX to increase the solubility and the bioavailability. The formed G3@MX was further used to crosslink with poly-γ-glutamic acid (γ-PGA) to prepare a hydrogel (GP@MX hydrogel) through the amide bonding. In vitro and in vivo experiments evidenced that the hydrogel had good biosafety and biodegradability. More importantly, the prepared hydrogel could control the release of MX, and the released MX is able to inhibit inflammatory responses and balance the fibrinolytic system in the injury tissues in vivo. The tunable rheological and mechanical properties (compressive moduli: from âˆ¼ 57.31 kPa to âˆ¼ 98.68 kPa;) and high anti-oxidant capacity (total free radical scavenging rate of âˆ¼ 94.56 %), in conjunction with their syringeability and biocompatibility, indicate possible opportunities for the development of advanced hydrogels for postoperative tissue adhesions management.


Assuntos
Dendrímeros , Hidrogéis , Meloxicam , Nylons , Ácido Poliglutâmico , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/análogos & derivados , Nylons/química , Aderências Teciduais/prevenção & controle , Dendrímeros/química , Dendrímeros/farmacologia , Meloxicam/química , Meloxicam/farmacologia , Meloxicam/administração & dosagem , Camundongos , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fibrinólise/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Tamanho da Partícula , Injeções , Portadores de Fármacos/química
13.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580026

RESUMO

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.


Assuntos
Antioxidantes , Quitosana , Nanopartículas em Multicamadas , Ácido Poliglutâmico , Polissacarídeos , Quercetina , Peixe-Zebra , Zeína , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Vasos Sanguíneos/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Nanopartículas em Multicamadas/química , Peso Molecular , Tamanho da Partícula , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Quercetina/farmacologia , Quercetina/química , Zeína/química
14.
J Sci Food Agric ; 104(11): 6884-6892, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591419

RESUMO

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is employed extensively in agriculture to enhance soil water retention; however, the underlying mechanism by which γ-PGA improves soil structure and soybean productivity in arid regions remains poorly understood. A micro-scale field experiment was conducted in the arid region of northwest China, employing five concentrations of γ-PGA to investigate its impacts on soybean yield, photosynthesis, and water-use efficiency, as well as soil aggregates and water distribution. The five levels of γ-PGA were 0 (CK), 10 (P1), 20 (P2), 40 (P3), and 80 kg ha-1 (P4). RESULTS: The results demonstrated that the application of γ-PGA significantly improved soybean yield, photosynthesis, and chlorophyll content. It resulted in a decrease in soil aggregate content with a maximum diameter of less than 0.053 mm and an increase in the stability of soil aggregates in the uppermost layer of the soil (0-30 cm). The application of γ-PGA significantly increased soil water content, particularly in the uppermost layer of the soil, and effectively reduced water consumption and improving water use efficiency in soybeans. Overall, the P3 treatment exhibited the most pronounced improvement of soybean yield, photosynthesis, water-use efficiency, as well as distribution of soil aggregates and water. The correlation matrix heatmap also revealed a strong correlation between improvement of soybean yield or photosynthesis at various γ-PGA application levels and the enhancement of soil stability or soil water content. CONCLUSION: The multivariate regression analysis revealed that an optimal application level of 46 kg ha-1 γ-PGA could enhance effectively both yield and water use efficiency of soybean in the arid region of northwest China. © 2024 Society of Chemical Industry.


Assuntos
Glycine max , Fotossíntese , Ácido Poliglutâmico , Solo , Água , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Solo/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/metabolismo , Água/metabolismo , Água/análise , China , Fertilizantes/análise , Clorofila/metabolismo
15.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581093

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Ácido Poliglutâmico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutâmico/metabolismo , Peso Molecular , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Genômica , Fermentação
16.
J Agric Food Chem ; 72(15): 8674-8683, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569079

RESUMO

The enhancement of intracellular glutamate synthesis in glutamate-independent poly-γ-glutamic acid (γ-PGA)-producing strains is an essential strategy for improving γ-PGA production. Bacillus tequilensis BL01ΔpgdSΔggtΔsucAΔgudB:P43-ppc-pyk-gdhA for the efficient synthesis of γ-PGA was constructed through expression of glutamate synthesis features of Corynebacterium glutamicum, which increased the titer of γ-PGA by 2.18-fold (3.24 ± 0.22 g/L) compared to that of B. tequilensis BL01ΔpgdSΔggtΔsucAΔgudB (1.02 ± 0.11 g/L). To further improve the titer of γ-PGA and decrease the production of byproducts, three enzymes (Ppc, Pyk, and AceE) were assembled to a complex using SpyTag/Catcher pairs. The results showed that the γ-PGA titer of the assembled strain was 31.31% higher than that of the unassembled strain. To further reduce the production cost, 25.73 ± 0.69 g/L γ-PGA with a productivity of 0.48 g/L/h was obtained from cheap molasses. This work provides new metabolic engineering strategies to improve the production of γ-PGA in B. tequilensis BL01. Furthermore, the engineered strain has great potential for the industrial production of γ-PGA from molasses.


Assuntos
Bacillus , Corynebacterium glutamicum , Ácido Poliglutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
17.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651274

RESUMO

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Polieletrólitos/química , Polieletrólitos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Micelas , Infecções por Escherichia coli/tratamento farmacológico , Hemólise/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Humanos
18.
Biomacromolecules ; 25(5): 3033-3043, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652289

RESUMO

Intrinsically disordered proteins (IDPs) do not have a well-defined folded structure but instead behave as extended polymer chains in solution. Many IDPs are rich in glycine residues, which create steric barriers to secondary structuring and protein folding. Inspired by this feature, we have studied how the introduction of glycine residues influences the secondary structure of a model polypeptide, poly(l-glutamic acid), a helical polymer. For this purpose, we carried out ring-opening copolymerization with γ-benzyl-l-glutamate and glycine N-carboxyanhydride (NCA) monomers. We aimed to control the glycine distribution within PBLG by adjusting the reactivity ratios of the two NCAs using different reaction conditions (temperature, solvent). The relationship between those conditions, the monomer distributions, and the secondary structure enabled the design of intrinsically disordered polypeptides when a highly gradient microstructure was achieved in DMSO.


Assuntos
Anidridos , Glicina , Proteínas Intrinsicamente Desordenadas , Polimerização , Glicina/química , Proteínas Intrinsicamente Desordenadas/química , Anidridos/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Estrutura Secundária de Proteína , Peptídeos/química , Dobramento de Proteína
19.
Eur J Pharm Biopharm ; 199: 114281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599299

RESUMO

Nattokinase (NK) is a thrombolytic enzyme extracted from natto, which can be used to prevent and treat blood clots. However, it is sensitive to the environment, especially the acidic environment of human stomach acid, and its effect of oral ingestion is minimal. This study aims to increase NK's oral and storage stability by embedding NK in microcapsules prepared with chitosan (CS) and γ-polyglutamic acid (γ-PGA). The paper prepared a double-layer NK oral delivery system by layer self-assembly and characterized its stability and in vitro simulated digestion. According to the research results, the bilayer putamen structure has a protective effect on NK, which not only maintains high activity in various environments (such as acid-base, high temperature) and long-term storage (60 days), but also effectively protects the loaded NK from being destroyed in gastric fluid and achieves its slow release. This work has proved the feasibility of the design of bilayer putamen structure in oral administration and has good fibrolytic activity. Therefore, the novel CS/γ-PGA microcapsules are expected to be used in nutraceutical delivery systems.


Assuntos
Quitosana , Estabilidade de Medicamentos , Fibrinolíticos , Ácido Poliglutâmico , Subtilisinas , Quitosana/química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Subtilisinas/metabolismo , Subtilisinas/química , Fibrinolíticos/química , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacologia , Administração Oral , Humanos , Digestão/efeitos dos fármacos , Cápsulas , Sistemas de Liberação de Medicamentos/métodos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Portadores de Fármacos/química
20.
Int J Biol Macromol ; 267(Pt 1): 131280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640644

RESUMO

Bacterial cellulose (BC) is an ideal candidate material for drug delivery, but the disbalance between the swelling behavior and mechanical properties limits its application. In this work, covalent crosslinking of γ-polyglutamic acid (γ-PGA) with the chitosan oligosaccharide (COS) embedded in BC was designed to remove the limitation. As a result, the dosage, time, and batch of COS addition significantly affected the mechanical properties and the yield of bacterial cellulose complex film (BCCF). The addition of 2.25 % COS at the incubation time of 0.5, 1.5, and 2 d increased the Young's modulus and the yield by 5.65 and 1.42 times, respectively, but decreased the swelling behavior to 1774 %, 46 % of that of native BC. Covalent γ-PGA transformed the dendritic structure of BCCF into a spider network, decreasing the porosity and increasing the swelling behavior by 3.46 times. The strategy balanced the swelling behavior and mechanical properties through tunning hydrogen bond, electrostatic interaction, and amido bond. The modified BCCF exhibited a desired behavior of benzalkonium chlorides transport, competent for drug delivery. Thereby, the strategy will be a competent candidate to modify BC for such potential applications as wound dressing, artificial skin, scar-inhibiting patch, and so on.


Assuntos
Celulose , Quitosana , Oligossacarídeos , Ácido Poliglutâmico , Ácido Poliglutâmico/análogos & derivados , Quitosana/química , Celulose/química , Oligossacarídeos/química , Ácido Poliglutâmico/química , Fenômenos Mecânicos , Bactérias/efeitos dos fármacos , Módulo de Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...