Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.403
Filtrar
1.
Physiol Plant ; 176(4): e14459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109439

RESUMO

Climate change induces significant abiotic stresses that adversely affect crop yields. One promising solution to improve plant resilience under adverse conditions is the application of exogenous salicylic acid (SA). However, its negative effects on growth and development are a concern. Encapsulation with protective materials like amorphous silica and chitosan has demonstrated a controlled release of SA, minimizing the detrimental impacts. In this work, we elucidate the physiological mechanisms behind this protective mechanism. We employed in vitro cultivation of Arabidopsis, comparing plant responses to both free and encapsulated SA under conditions of salt or mannitol stress, combined or not with high temperature (30°C). Plants treated with encapsulated SA displayed an enhanced tolerance to these stresses that was due, at least in part, to the maintenance of physiological endogenous SA levels, which in turn regulate indole-3-acetic acid (IAA) homeostasis. The activity of the Arabidopsis "DR5::GFP" reporter line supported this finding. Unlike plants treated with free SA (with altered DR5 activity under stress), those treated with encapsulated SA maintained similar activity levels to control plants. Moreover, stressed plants treated with free SA overexpressed genes involved in the SA biosynthesis pathway, leading to increased SA accumulation in roots and rosettes. In contrast, plants treated with encapsulated SA under stress did not exhibit increased expression of EDS1, PAL1, and NPR1 in roots, or of PAL1, PBS3, and NPR1 in rosettes. This indicates that these plants likely experienced lower stress levels, possibly because the encapsulated SA provided sufficient defense activation without triggering pleiotropic effects.


Assuntos
Arabidopsis , Homeostase , Reguladores de Crescimento de Plantas , Ácido Salicílico , Estresse Fisiológico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Physiol Plant ; 176(4): e14479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187434

RESUMO

Tetranychus urticae is an important pest that causes severe damage to a wide variety of plants and crops, leading to a substantial productivity loss. Previous research has been focused on plant defence response to T. urticae to improve plant resistance. However, plant growth, development and reproduction throughout the infestation process have not been previously studied. Through physiological, biochemical, transcriptomic and hormonomic evaluation, we uncover the molecular mechanisms directing the defence-growth trade-off established in Arabidopsis upon T. urticae infestation. Upon mite attack, plants suffer an adaptation process characterized by a temporal separation between the defence and growth responses. Jasmonic and salicylic acids regulate the main defence responses in combination with auxin and abscisic acid. However, while the reduction of both auxin signalling and gibberellin, cytokinin and brassinosteroid biosynthesis lead to initial growth arrest, increasing levels of growth hormones at later stages enables growth restart. These alterations lead to a plant developmental delay that impacts both seed production and longevity. We demonstrate that coordinated trade-offs determine plant adaptation and survival, revealing mite infestation has a long-lasting effect negatively impacting seed viability. This study provides additional tools to design pest management strategies that improve resistance without penalty in plant fitness.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Tetranychidae , Animais , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/parasitologia , Arabidopsis/genética , Tetranychidae/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/parasitologia , Oxilipinas/metabolismo , Citocininas/metabolismo , Ácido Abscísico/metabolismo
4.
Physiol Plant ; 176(4): e14475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140303

RESUMO

Rhizoctonia solani is a fungal pathogen that causes significant losses in agricultural production. Because of its rapid transmission and broad host range, the exploration of genes involved in defense responses to the infection of R. solani has become an important task. Here, we performed a time-course RNA-Seq experiment to explore crucial genes or pathways involved in host responses to R. solani AG3-TB infection at 6, 12, 24, 36, 48, and 72 hours post inoculation (hpi). GO and KEGG enrichment analysis revealed that most DEGs were enriched in the basal metabolism pathways, including carbohydrate metabolic processes and the biosynthesis of amino acids. Moreover, catalase (CAT) and superoxide dismutase (SOD) were up-regulated, and transcription factors (TFs) such as WRKY, AP2, and MYB were increased significantly compared to the control (0 hpi). Silencing of WRKY70 and catalase-3 exhibited elevated susceptibility to the fungal infection. To summarize, the TFs WRKY70 and WRKY75, genes involved in jasmonic acid (JA), salicylic acid (SA), and brassinosteroids (BR) signaling pathways, and defense-related enzymes may play crucial roles in the host responses to R. solani AG3-TB infection.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Rhizoctonia , Fatores de Transcrição , Rhizoctonia/fisiologia , Rhizoctonia/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Interações Hospedeiro-Patógeno/genética
5.
BMC Plant Biol ; 24(1): 770, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135170

RESUMO

BACKGROUND: Unfavorable temperatures significantly constrain the quality formation of Dendrobium officinale, severely limiting its food demand. Salicylic acid (SA) enhances the resistance of D. officinale to stress and possesses various analogs. The impact and mechanism of the SA family on improving the quality of D. officinale under adverse temperature conditions remains unclear. RESULTS: Combined with molecular docking analysis, chlorophyll fluorescence and metabolic analysis after treatments with SA analogues or extreme temperatures are performed in this study. The results demonstrate that both heat and cold treatments impede several main parameters of chlorophyll fluorescence of D. officinale, including the ΦPSII parameter, a sensitive growth indicator. However, this inhibition is mitigated by SA or its chemically similar compounds. Comprehensive branch imaging of ΦPSII values revealed position-dependent improvement of tolerance. Molecular docking analysis using a crystal structure model of NPR4 protein reveals that the therapeutic effects of SA analogs are determined by their binding energy and the contact of certain residues. Metabolome analysis identifies 17 compounds are considered participating in the temperature-related SA signaling pathway. Moreover, several natural SA analogs such as 2-hydroxycinnamic acid, benzamide, 2-(formylamino) benzoic acid and 3-o-methylgallic acid, are further found to have high binding ability to NPR4 protein and probably enhance the tolerance of D. officinale against unfavorable temperatures through flavone and guanosine monophosphate degradation pathways. CONCLUSIONS: These results reveal that the SA family with a high binding capability of NPR4 could improve the tolerance of D. officinale upon extreme temperature challenges. This study also highlights the collaborative role of SA-related natural compounds present in D. officinale in the mechanism of temperature resistance and offers a potential way to develop protective agents for the cultivation of D. officinale.


Assuntos
Dendrobium , Simulação de Acoplamento Molecular , Ácido Salicílico , Dendrobium/metabolismo , Dendrobium/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Temperatura , Clorofila/metabolismo
6.
Nat Commun ; 15(1): 7212, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174537

RESUMO

N-hydroxy pipecolic acid (NHP) plays an important role in plant immunity. In contrast to its biosynthesis, our current knowledge with respect to the transcriptional regulation of the NHP pathway is limited. This study commences with the engineering of Arabidopsis plants that constitutively produce high NHP levels and display enhanced immunity. Label-free proteomics reveals a NAC-type transcription factor (NAC90) that is strongly induced in these plants. We find that NAC90 is a target gene of SAR DEFICIENT 1 (SARD1) and induced by pathogen, salicylic acid (SA), and NHP. NAC90 knockout mutants exhibit constitutive immune activation, earlier senescence, higher levels of NHP and SA, as well as increased expression of NHP and SA biosynthetic genes. In contrast, NAC90 overexpression lines are compromised in disease resistance and accumulated reduced levels of NHP and SA. NAC90 could interact with NAC61 and NAC36 which are also induced by pathogen, SA, and NHP. We next discover that this protein triad directly represses expression of the NHP and SA biosynthetic genes AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1), FLAVIN MONOOXYGENASE 1 (FMO1), and ISOCHORISMATE SYNTHASE 1 (ICS1). Constitutive immune response in nac90 is abolished once blocking NHP biosynthesis in the fmo1 background, signifying that NAC90 negative regulation of immunity is mediated via NHP biosynthesis. Our findings expand the currently documented NHP regulatory network suggesting a model that together with NHP glycosylation, NAC repressors take part in a 'gas-and-brake' transcriptional mechanism to control NHP production and the plant growth and defense trade-off.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Pipecólicos , Imunidade Vegetal , Ácido Salicílico , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ácidos Pipecólicos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteômica/métodos
7.
Arch Dermatol Res ; 316(8): 579, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180560

RESUMO

OBJECTIVE: This research was aimed at ascertaining the clinical effects of 595 nm pulsed dye laser (PDL) in combination with supramolecular salicylic acid (SSA) in the treatment of rosacea. METHODS: Eighty-four patients with rosacea were selected, of which 42 patients treated with PDL alone were considered as the control group, and 42 patients treated with 595 nm PDL in combination with 30% SSA were regarded as the observation group. The treatment continued for 4 months in the two groups. Clinical symptom scores, skin barrier function indicators, serum inflammatory factors, Acne⁃QOL scores and adverse reactions between the two groups were compared. RESULTS: After treatment, levels of inflammatory factors, clinical symptom scores, transdermal water loss, and oil volume were decreased, and epidermal water content and Acne-QOL scores were increased in both groups (all P < 0.05), and the changes in the observation group were more pronounced versus the control group (all P < 0.05). The difference in the incidence of adverse reactions was not statistically significant between the two groups (P > 0.05). CONCLUSION: 595 nm PDL in combination with SSA is safe in the treatment of rosacea.


Assuntos
Lasers de Corante , Rosácea , Ácido Salicílico , Humanos , Rosácea/terapia , Rosácea/diagnóstico , Rosácea/tratamento farmacológico , Lasers de Corante/uso terapêutico , Lasers de Corante/efeitos adversos , Feminino , Ácido Salicílico/administração & dosagem , Masculino , Adulto , Resultado do Tratamento , Pessoa de Meia-Idade , Terapia Combinada/métodos , Qualidade de Vida , Terapia com Luz de Baixa Intensidade/métodos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Adulto Jovem , Pele/patologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação
8.
Gene ; 928: 148810, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089530

RESUMO

Caffeoyl-coenzyme 3 A-O-methyltransferase (CCoAOMT) plays a crucial role in the lignin synthesis in many higher plants. In this study, nine PbCCoAOMT genes in total were identified from pear, and classified into six categories. We treated pear fruits with hormones abscisic acid (ABA) and methyl jasmonate (MeJA) and salicylic acid (SA) and observed differential expression levels of these genes. Through qRT-PCR, we also preliminarily identified candidate PbCCoAOMT gene, potentially involved in lignin synthesis in pear fruits. Additionally, the overexpression of PbCCoAOMT1/2 in Arabidopsis and pear fruits increased in lignin content. Enzymatic assays showed that recombinant PbCCoAOMT1/2 proteins have similar enzymatic activity in vitro. The Y1H (Yeast one-hybrid) and dual luciferase (dual-LUC) experiments demonstrated that PbMYB25 can bind to the AC elements in the promoter region of the PbCCoAOMT1 gene. Our findings suggested that the PbCCoAOMT1 and PbCCoAOMT2 genes may contribute to the synthesis of lignin and provide insights into the mechanism of lignin biosynthesis and stone cell development in pear fruits.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Lignina , Metiltransferases , Pyrus , Lignina/metabolismo , Lignina/biossíntese , Metiltransferases/genética , Metiltransferases/metabolismo , Pyrus/genética , Pyrus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Frutas/genética , Frutas/metabolismo , Ácido Salicílico/metabolismo , Regiões Promotoras Genéticas , Plantas Geneticamente Modificadas/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo
9.
BMC Plant Biol ; 24(1): 788, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164648

RESUMO

Salinity stress is one of the most important stress barriers to crop production worldwide. Developing and implementing new strategies against salinity stress is critical for increasing agricultural productivity and supporting sustainable farming. Elicitors such as nanoparticles and Salicylic acid have recently been used potentially for better product yield. Therefore, in our research the Salvia virgata plant was exposed to salinity (NaCl) stress, and zinc oxide nanoparticles (ZnONP), salicylic acid (SA), and the ZnONP + SA combination were applied to plants divided into different groups. While salinity stress decreased the amount of chlorophyll a, chlorophyll b, and carotenoid pigments, SA, ZnONP, and SA + ZnONP elicitors combined with salinity stress enhanced the content of all three pigments. While salt stress raised MDA, H2O2, total phenolic, total flavonoid, soluble sugar and proline content, elicitor applications enhanced proline, soluble sugar, total phenolic and total flavonoid content more. Additionally, the application of NaCl + SA + ZnONP increased proline content by 21.55% and sugar content by 15.73% compared to NaCl application, while decreasing MDA content by 42.28% and H2O2 levels by 42.34%, thereby alleviating the plant's salt stress. It was revealed that DPPH, ABTS, and CUPRAC antioxidant activity sequence used to determine the total antioxidant activity displayed similarities, and it was found as NaCI + ZnONP > NaCI + SA > NaCI + SA + ZnONP > NaCI > Control. Furthermore, all elicitor applications increased CAT, GR, APX, and SOD enzyme activities while reducing oxidative stress in S. virgata plants. When all the data were evaluated, it was confirmed that SA and ZnONP had a synergistic effect and that SA and ZnONP have the potential to support plant development and growth under salinity. SA and ZnONP applications may have the capacity to least the detrimental impacts of salinity stress on plants. However, further research is needed to investigate the effectiveness of SA and ZnONPs in ameliorating salinity or different stress factors in various other plants.


Assuntos
Antioxidantes , Ácido Salicílico , Estresse Salino , Salvia , Antioxidantes/metabolismo , Salvia/fisiologia , Salvia/efeitos dos fármacos , Salvia/metabolismo , Ácido Salicílico/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Carotenoides/metabolismo , Flavonoides/metabolismo
10.
Physiol Plant ; 176(4): e14483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39169536

RESUMO

Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.


Assuntos
Arabidopsis , Flavobacterium , Folhas de Planta , Ácido Salicílico , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/imunologia , Ácido Salicílico/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Flavobacterium/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Pseudomonas/fisiologia , Regulação da Expressão Gênica de Plantas
11.
Sci Rep ; 14(1): 19106, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154043

RESUMO

In current work, we studied hairy root induction in Trigonella foenum graecum, which is an important medicinal plant, and examined the impact of different elicitors on some phytochemical characteristics and metabolites production in hairy root cultures. Accordingly, some factors such as five strain types of Agrobacterium rhizogenes (1724, 15834, A4, A13 and MSU) and three different explants, namely leaf, cotyledon and hypocotyl were studied. The results showed that different A. rhizogenes strains exhibited different infection efficiency. MSU and 15834 had highest efficiency of hairy root induction than other strains. Also, hairy root induction frequency in leaf explants was higher than in other explants. Salicylic acid (SA), nitric oxide (NO), CaCl2 and penconazole (PEN) were used in elicitation process. Hairy roots were treated with SA (0.1 and 0.5 mM), NO (10 and 50 µM), CaCl2 (5 and 10 mM) and PEN (5 and 10 mg/L). Applied elicitors enhanced antioxidant enzymes activities and reduced oxidative stress markers; this observation might be ascribed to regulation of the oxidative status of the elicited cells. Significant increase of antioxidant metabolites (total phenol, flavonoid and anthocyanin) in PEN-treated hairy roots was associated to phenylalanine ammonia lyase activity, indicating an up-regulation of phenylpropanoid/flavonoid metabolism. PEN and CaCl2 treatment enhanced steroidal sapogenin in hairy root cultures. These results suggested that use of elicitors can enhance the production of secondary metabolites in transformed hairy roots. Among the elicitors applied, CaCl2 and PEN were the most effective in increasing secondary metabolite production in transformed hairy roots of T. foenum graecum.


Assuntos
Raízes de Plantas , Sapogeninas , Trigonella , Trigonella/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sapogeninas/metabolismo , Agrobacterium/metabolismo , Agrobacterium/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Folhas de Planta/metabolismo , Óxido Nítrico/metabolismo , Antioxidantes/metabolismo
12.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107692

RESUMO

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Assuntos
Irrigação Agrícola , Folhas de Planta , Ácido Salicílico , Solanum tuberosum , Águas Residuárias , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Folhas de Planta/efeitos dos fármacos , Irrigação Agrícola/métodos , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/anatomia & histologia , Antioxidantes/metabolismo
13.
J Agric Food Chem ; 72(28): 15601-15612, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950526

RESUMO

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.


Assuntos
Arachis , Basidiomycota , Doenças das Plantas , Arachis/microbiologia , Arachis/metabolismo , Arachis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fungicidas Industriais/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
14.
Nat Commun ; 15(1): 6336, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068146

RESUMO

Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.


Assuntos
Arabidopsis , Phytophthora , Doenças das Plantas , Imunidade Vegetal , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Salicílico/metabolismo , Oomicetos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Sci Total Environ ; 947: 174585, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986688

RESUMO

The focus on phytoremediation in soil cadmium (Cd) remediation is driven by its cost-effectiveness and eco-friendliness. Selecting suitable hyperaccumulators and optimizing their growth conditions are key to enhance the efficiency of heavy metal absorption and accumulation. Our research has concentrated on the role of salicylic acid (SA) and jasmonic acid (JA) in facilitating Cd phytoextraction by "Sedum alfredii (S. alfredii)" through improved soil-microbe interactions. Results showed that SA or JA significantly boosted the growth, stress resistance, and Cd extraction efficiency in S. alfredii. Moreover, these phytohormones enhanced the chemical and biochemical attributes of the rhizosphere soil, such as pH and enzyme activity, affecting soil-root interactions. High-throughput sequencing analysis has shown that Patescibacteria and Umbelopsis enhanced S. alfredii's growth and Cd extraction by modifying the bioavailability and the chemical conditions of Cd in soil. Structural Equation Model analysis further verified that phytohormones significantly enhanced the interaction between S. alfredii, soil, and microbes, leading to a marked increase in Cd accumulation in the plant. These discoveries emphasized the pivotal role of phytohormones in modulating the hyperaccumulators' response to environmental stress and offered significant scientific support for further enhancing the potential of hyperaccumulators in ecological restoration technologies using phytohormones.


Assuntos
Biodegradação Ambiental , Cádmio , Ciclopentanos , Oxilipinas , Rizosfera , Ácido Salicílico , Sedum , Microbiologia do Solo , Poluentes do Solo , Cádmio/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Poluentes do Solo/metabolismo , Sedum/metabolismo , Ciclopentanos/metabolismo , Microbiota , Reguladores de Crescimento de Plantas/metabolismo
16.
PLoS One ; 19(7): e0306340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052558

RESUMO

Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 µmol mol-1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 µmol mol-1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 µmol mol-1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 µmol mol-1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 µmol mol-1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 µmol mol-1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 µmol mol-1 SA treatment. However, under 400 µmol mol-1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400 µmol mol-1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.


Assuntos
Agastache , Antioxidantes , Ácido Salicílico , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Agastache/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Carotenoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Flavonoides/metabolismo , Cinamatos/metabolismo , Depsídeos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Ácido Rosmarínico
17.
Food Res Int ; 191: 114699, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059955

RESUMO

Ascorbic acid (AsA) is an indicator of the nutritional value of freshly cut kiwifruit during storage at 4℃, and its degradation can be inhibited after ozone treatment (1 mg/L, 10 min). The aim of this study was to elucidate the regulatory mechanism affecting AsA metabolism in fresh-cut kiwifruit after ozone treatment. In this study, ozone treatment not only prevented the decrease in AsA/dehydroascorbic acid and delayed the accumulation of total soluble solids/titratable acidity, but also altered phytohormone levels differently. Transcriptomic profiling combined with cis-acting element and correlation analysis were performed to reveal that abscisic acid and salicylic acid synergistically delay AsA degradation under ozone-treatment conditions. Actinidia03760, encoding ascorbate peroxidase, could be specifically recognized by the bZIP transcription factor and is considered a key candidate gene for further research. Collectively, ozone treatment is a promising method for preserving AsA content and improving the nutrition of fresh-cut kiwifruit.


Assuntos
Actinidia , Ácido Ascórbico , Frutas , Perfilação da Expressão Gênica , Ozônio , Reguladores de Crescimento de Plantas , Transdução de Sinais , Actinidia/genética , Actinidia/química , Actinidia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/metabolismo , Frutas/química , Frutas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma , Ácido Salicílico , Ácido Abscísico/metabolismo
18.
Plant Physiol Biochem ; 214: 108933, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033650

RESUMO

WRKY transcription factors are essential for coping with various biotic stresses. Pseudomonas syringae pv. actinidiae (Psa)-induced kiwifruit canker is a major problem restricting kiwifruit yield. Nevertheless, it's unclear how the kiwifruit WRKY genes respond to Psa. Through genome-wide identification, 112 WRKY members were found in 'Hongyang' genome in this work. Promoter analysis revealed that there were many cis-acting elements associated with stress responses in the AcWRKY gene's promoter region. According to transcriptomic analysis, 90 of the AcWRKY genes were differently expressed following Psa, salicylic acid (SA), or methyl jasmonate (MeJA) treatments. Almost all group III WRKYs were responsive to at least one of these treatments, with tissue-specific expression patterns. Quantitative RT-PCR study provided more evidence that Psa and SA treatments significantly induced the expression of the group III WRKY gene AcWRKY94, whereas MeJA treatment repressed it. AcWRKY94 was a transcriptionally active protein localized in the nucleus. Transient overexpression of AcWRKY94 in the leaves of 'Hongyang' enhanced the resistance of kiwifruit to Psa. Overexpression of AcWRKY94 in kiwifruit callus remarkably promoted the expression of PR and JAZ genes associated with SA and JA signals, respectively. These data imply that AcWRKY94 controls the signaling pathway dependent on SA and JA, thereby enhancing resistance to Psa. Taken together, this study establishes the basis for functional research on WRKY genes and provides important information for elucidating the resistance mechanism of kiwifruit canker disease.


Assuntos
Actinidia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Pseudomonas syringae , Fatores de Transcrição , Actinidia/microbiologia , Actinidia/genética , Pseudomonas syringae/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Frutas/microbiologia , Frutas/genética , Resistência à Doença/genética , Regiões Promotoras Genéticas/genética
19.
Sci Rep ; 14(1): 16823, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039220

RESUMO

Exploring host plant resistance and elevating plant defense mechanisms through the application of exogenous elicitors stands as a promising strategy for integrated pest management. The fall armyworm, a pernicious menace to grain crops in tropical and subtropical regions, stands as a formidable threat due to its capacity for devastation and a wide-ranging spectrum of host plants. There is no literature regarding artificially induced resistance in maize against fall armyworm (Spodoptera frugiperda) by exogenous application of phytohormones. The present investigation was performed to evaluate the role of jasmonic acid (JA) and salicylic acid (SA) on two maize hybrids namely FH-1046 and YH-1898 against fall armyworm. Results showed that plant height, biomass and lengths, fresh and dry weight of root shoot which decreased with armyworm infestation improved with phytohormonal application. JA treatment resulted in a higher increase in all attributes as compared to SA treatment. Improvement in relative water contents, photosynthetic pigments and pronounced levels of phenol and proline accumulation were observed in infested plants after JA treatment. Infested plants recovered from oxidative stress as JA application activated and increased the antioxidant enzyme activity of superoxide dismutase, peroxidase and polyphenol oxidase activity in both FH-1046 and YH-1898 . The oxidative stress reduction in infested plants after JA treatment was also evident from a fair decrease in MDA and H2O2 in both varieties. The SA and JA mediated genes expression was studied and it was found that in FH1046 maize cultivar, JA dependent genes, particularly marker genes PR1 and Lox5 were highly expressed along with TPS10 and BBT12. Whereas SPI, WRKY28, ICS and PAL were shown to be activated upon SA application. Evidently, both JA and SA elicited a robust defensive response within the maize plants against the voracious S. frugiperda, which in consequence exerted a discernible influence over the pest's developmental trajectory and physiological dynamics. A decrease in detoxification enzyme activity of the insects was observed after feeding on treated plants. Moreover, it was recorded that the survival and weight gain of FAW feeding on phytohormone treated maize plants also decelerated. In conclusion, FH-1046 was found to be more tolerant than YH-1898 against fall armyworm infestation and 1 mM JA was more effective than 1 mM SA for alleviation of fall armyworm stress. Therefore, it was inferred that phytohormones regulated redox homeostasis to circumvent oxidative damage and mediate essential metabolic events in maize under stress. To our current understanding, this study is the very first presentation of induced resistance in maize against S. frugiperda with the phytohormonal application (JA and SA).


Assuntos
Ciclopentanos , Oxilipinas , Ácido Salicílico , Spodoptera , Zea mays , Zea mays/parasitologia , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética , Spodoptera/efeitos dos fármacos , Animais , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Oxirredução/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Doenças das Plantas/parasitologia , Estresse Oxidativo/efeitos dos fármacos
20.
Mol Plant ; 17(8): 1289-1306, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003499

RESUMO

Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Nitrogênio , Folhas de Planta , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/genética , Nitrogênio/metabolismo , Senescência Vegetal/genética , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...