RESUMO
Carboxylesterases serve as potent biocatalysts in the enantioselective synthesis of chiral carboxylic acids and esters. However, naturally occurring carboxylesterases exhibit limited enantioselectivity, particularly toward ethyl 3-cyclohexene-1-carboxylate (CHCE, S1), due to its nearly symmetric structure. While machine learning effectively expedites directed evolution, the lack of models for predicting the enantioselectivity for carboxylesterases has hindered progress, primarily due to challenges in obtaining high-quality training datasets. In this study, we devise a high-throughput method by coupling alcohol dehydrogenase to determine the apparent enantioselectivity of the carboxylesterase AcEst1 from Acinetobacter sp. JNU9335, generating a high-quality dataset. Leveraging seven features derived from biochemical considerations, we quantitively describe the steric, hydrophobic, hydrophilic, electrostatic, hydrogen bonding, and π-π interaction effects of residues within AcEst1. A robust gradient boosting regression tree model is trained to facilitate stereodivergent evolution, resulting in the enhanced enantioselectivity of AcEst1 toward S1. Through this approach, we successfully obtain two stereocomplementary variants, DR3 and DS6, demonstrating significantly increased and reversed enantioselectivity. Notably, DR3 and DS6 exhibit utility in the enantioselective hydrolysis of various symmetric esters. Comprehensive kinetic parameter analysis, molecular dynamics simulations, and QM/MM calculations offer insights into the kinetic and thermodynamic features underlying the manipulated enantioselectivity of DR3 and DS6.
Assuntos
Acinetobacter , Carboxilesterase , Ésteres , Aprendizado de Máquina , Ésteres/metabolismo , Ésteres/química , Estereoisomerismo , Cinética , Carboxilesterase/metabolismo , Carboxilesterase/genética , Carboxilesterase/química , Acinetobacter/enzimologia , Acinetobacter/genética , Especificidade por Substrato , Evolução Molecular Direcionada/métodos , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/química , Ligação de HidrogênioRESUMO
Biodegradable plastics (BPs) are presenting new challenges for their reutilization. This work found that volatile fatty acids (VFAs) production by co-fermentation of BPs with waste activated sludge (WAS) reached 4-37 times of the WAS fermentation alone, which was further amplified by pH regulation (especially alkaline regulation). Moreover, the VFAs composition is highly associated with BPs category. By contrast, the traditional plastic showed a limited effect on the VFAs yield and composition. Alkaline regulation enhanced the breakdown of BPs' ester bonds and boosted WAS disintegration, increasing bioavailable substrates. The hydrolytic-acidogenic anaerobes (i.e., Serpentinicella and Proteiniclasticum) and the major metabolic processes participated in the transformation of BPs and WAS to VFAs were upregulated under alkaline conditions. Further exploration unveiled that quorum sensing and peptidoglycan synthesis played important roles in counteracting alkaline stress and maintaining microbial activity for effective VFAs generation. The works demonstrated the effectiveness of pH-regulated anaerobic co-fermentation for BPs valorization.
Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Ácidos Carboxílicos/metabolismo , Plásticos Biodegradáveis , Adaptação Fisiológica , Percepção de QuorumRESUMO
Medium-chain carboxylic acids (MCCAs) show great promise as commercial chemicals due to their high energy density, significant product value, and wide range of applications. The production of MCCAs from waste biomass through coupling chain extension with anaerobic fermentation represents a new and innovative approach to biomass utilization. This review provides an overview of the principles of MCCAs production through coupled chain extension and anaerobic fermentation, as well as the extracellular electron transfer pathways and microbiological effects involved. Emphasis is placed on the mechanisms, limitations, and microbial interactions in MCCAs production, elucidating metabolic pathways, potential influencing factors, and the cooperative and competitive relationships among various microorganisms. Additionally, this paper delves into a novel technology for the bio-electrocatalytic generation of MCCAs, which promotes electron transfer through the use of different three-dimensional electrodes, various electrical stimulation methods, and hydrogen-assisted approaches. The insights and conclusions from previous studies, as well as the identification of existing challenges, will be valuable for the further development of high-product-selectivity strategies and environmentally friendly treatments.
Assuntos
Ácidos Carboxílicos , Fermentação , Anaerobiose , Ácidos Carboxílicos/metabolismo , Biomassa , Técnicas Eletroquímicas/métodosRESUMO
Photoenzymes are light-powered biocatalysts that typically rely on the excitation of cofactors or unnatural amino acids for their catalytic activities1,2. A notable natural example is the fatty acid photodecarboxylase, which uses light energy to convert aliphatic carboxylic acids to achiral hydrocarbons3. Here we report a method for the design of a non-natural photodecarboxylase based on the excitation of enzyme-bound catalytic intermediates, rather than reliance on cofactor excitation4. Iminium ions5, transiently generated from enals within the active site of an engineered class I aldolase6, can absorb violet light and function as single-electron oxidants. Activation of chiral carboxylic acids, followed by decarboxylation, generates two radicals that undergo stereospecific cross-coupling, yielding products with two stereocentres. Using the appropriate enantiopure chiral substrate, the desired diastereoisomeric product is selectively obtained with complete enantiocontrol. This finding underscores the ability of the active site to transfer stereochemical information from the chiral radical precursor into the product, effectively addressing the long-standing problem of rapid racemization of chiral radicals. The resulting 'memory of chirality' scenario7 is a rarity in enantioselective radical chemistry.
Assuntos
Carboxiliases , Estereoisomerismo , Biocatálise/efeitos da radiação , Carboxiliases/química , Carboxiliases/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Descarboxilação , Elétrons , Radicais Livres/química , Radicais Livres/metabolismo , Iminas/química , Iminas/metabolismo , Luz , Oxidantes/química , Oxidantes/metabolismo , Engenharia de Proteínas , Especificidade por SubstratoRESUMO
Algal slurry (AS) generated from microalgae-based wastewater treatment processes holds significant potential for carboxylic acids production through anaerobic digestion (AD), which have emerged as promising products due to their high energy density, great economic value, and versatile applications. A comprehensive analysis of the pathways and optimization strategies for producing short-chain (SCCAs) and medium-chain (MCCAs) carboxylic acids using AS substrates is presented in this review. It begins by introducing and comparing two types of microalgae-based wastewater treatment processes: the microalgae process and the microalgal-bacterial consortia process. Afterwards, the review systematically examines the metabolic pathways involved in SCCAs and MCCAs production using AS substrates. Moreover, pretreatment strategies for enhancing the release of organic matter are critically discussed. Ultimately, specific emphasis is placed on addressing technical challenges and discussing future perspectives. This review provides a deeper understanding of the mechanisms and strategies involved in carboxylic acids production from wastewater-generated AS.
Assuntos
Ácidos Carboxílicos , Microalgas , Águas Residuárias , Ácidos Carboxílicos/metabolismo , Águas Residuárias/química , Microalgas/metabolismo , Anaerobiose , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodosRESUMO
Treatment wetland microcosms were constructed to evaluate the fate of O2-naphthenic acids in microcosm reactors containing OSPW only (i.e., natural attenuation), OSPW with peat soil (sorption and microbial degradation), and cattail microcosm reactors (plant-mediated uptake and biotransformation). Depletion in OSPW occurs by mechanisms of natural attenuation, sorption and microbial degradation, and plant-mediated uptake and biotransformation. The average rate of depletion for O2-naphthenic acids was 0.005 (SD 0.010) per day in OSPW only, 0.029 (SD 0.013) per day in OSPW with peat soil, and 0.043 (SD 0.013) per day in cattail microcosm reactors. Slow rates of depletion from OSPW by natural attenuation highlight the need to develop effective remediation strategies for OSPW, and the increase in rates of depletion for cattail microcosm reactors highlights the importance of wetland vegetation in supporting naphthenic acid removal from OSPW. Reactors containing OSPW with peat soil showed the greatest increase in rates of O2-naphthenic acid depletion for lower molecular weight congeners compared to reactors with OSPW only. Cattail microcosm reactors showed the greatest increase in the rates of O2-naphthenic acid depletion for higher molecular weight congeners compared to reactors with OSPW and peat soil.
Assuntos
Ácidos Carboxílicos , Poluentes Químicos da Água , Áreas Alagadas , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Campos de Petróleo e Gás , Solo/químicaRESUMO
Producing medium chain fatty acids (MCFAs) from waste activated sludge (WAS) is crucial for sustainable chemical industries. This study addressed the electron donor requirement for MCFAs production by inoculating Lactobacillus at varying concentrations (7.94 × 1010, 3.18 × 1011, and 6.35 × 1011 cell/L) to supply lactate internally. Interestingly, the highest MCFAs yield (â¼2000 mg COD/L) occurred at the lowest Lactobacillus inoculation. Higher inoculation concentrations redirected more carbon from WAS towards alcohols production rather than MCFAs generation, with up to 2852 mg COD/L alcohols obtained under 6.35 × 1011 cell/L inoculation. Clostridium dominance and increased genes abundance for substrate hydrolysis, lactate conversion, and MCFAs/alcohol production collectively enhanced WAS-derived MCFAs and alcohols synthesis after Lactobacillus inoculation. Overall, the strategy of Lactobacillus inoculation regulated fermentation outcomes and subsequent carbon recovery in WAS, presenting a sustainable technology to achieve liquid bio-energy production from underutilized wet wastes.
Assuntos
Álcoois , Fermentação , Lactobacillus , Esgotos , Esgotos/microbiologia , Lactobacillus/metabolismo , Álcoois/metabolismo , Ácidos Carboxílicos/metabolismo , Redes e Vias MetabólicasRESUMO
Nano zero-valent iron (NZVI) has been shown to effectively enhance the chain elongation (CE) process, addressing the issue of limited yield of medium-chain carboxylic acids (MCCA) from organic wastewater. However, the specific impact of NZVI on the metabolism of CE bacteria (CEB) is not well understood. In this study, it was aimed to investigate the mechanism by which an optimal concentration of NZVI influences CE metabolism, particularly in relation to ethanol oxidation, electron transfer, and MCCA synthesis. This was achieved through single-factor influence experiments and metagenomic analysis. The results showed that the addition of 1 g/gVSS NZVI achieved the highest MCCA yield (n-caproic acid + n-octanoic acid) at 2.02 g COD/L, which was 4.9 times higher than the control. This improvement in MCCA production induced by NZVI was attributed to several factors. Firstly, NZVI facilitated the oxidation of acetaldehyde, leading to its reduced accumulation in the system (from 18.4 % to 5.8 %), due to the optimized chemical environment created by NZVI corrosion, including near-neutral pH and a more reductive oxidation-reduction potential (ORP). Additionally, the inherent conductivity property of NZVI and the additional Fe ions released during corrosion improved the electron transfer efficiency between CEB. Lastly, both the composition of microbial communities and the abundance of unique enzyme genes confirmed the selective stimulation of NZVI on the reverse ß-oxidation (RBO) pathway. These findings provide valuable insights into the role of NZVI in CEB metabolism and its potential application for enhancing MCCA production in CE bioreactors.
Assuntos
Acetaldeído , Ácidos Carboxílicos , Ferro , Oxirredução , Ferro/química , Ferro/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Acetaldeído/química , Transporte de ElétronsRESUMO
Liquid chromatography-mass spectrometry (LC-MS) based metabolomics suffers from extended duty cycles and matrix-dependent quantitation. Chemical tags with 96 unique masses are reported, which alleviate the metabolomic workflow bottleneck and allow for absolute quantitation. A metabolic screen for carboxylic acids was performed on mammalian cells deprived of various nutrients and showed 24% RSD and analysis of 288 samples in 2 h.
Assuntos
Metabolômica , Metabolômica/métodos , Humanos , Espectrometria de Massas , Marcação por Isótopo , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/análise , Cromatografia Líquida/métodos , Ensaios de Triagem em Larga EscalaRESUMO
Enzymatic cleavage of CâF bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, ß-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.
Assuntos
Acetobacterium , Fluoretos , Fluoretos/metabolismo , Fluoretos/química , Acetobacterium/metabolismo , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/química , Elétrons , Biodegradação Ambiental , Halogenação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Fluorocarbonos/metabolismo , Fluorocarbonos/químicaRESUMO
The extraction and processing of bitumen from the oil sands in northern Alberta, Canada generates large volumes of oil sands process-affected water (OSPW). OSPW contains a complex mixture of inorganic and organic compounds, including naphthenic acid fraction compounds (NAFCs) that are of particular concern due to their toxicity to aquatic organisms. Phytoremediation is a cost-effective, scalable approach that has the potential to remove NAFCs from OSPW and reduce OSPW toxicity. Environmental pH influences the chemical form and bioavailability of NAFCs. However, little is known about the influence of pH on the uptake of NAFCs in plant systems. This study sought to elucidate the impact of rhizosphere pH on the uptake of NAFCs using a sandbar willow (Salix interior) hydroponic system. To mimic and maintain the naturally low pH conditions of the root, OSPW solutions in these systems were adjusted to a low pH level (pH 5.0) and their NAFC uptake from solution was compared to that of OSPW at native pH (pH 8.0). Our findings revealed that the lower pH hydroponic systems demonstrated enhanced NAFC removal from solution as determined by LC-MS analysis, where up to 26% of NAFCs were removed from OSPW over 72 h at pH 5.0 compared to 8% removed at pH 8.0. Similarly, analysis of spike-in 13C-labeled NAs demonstrated that the OSPW hydroponic system rapidly removed a relatively labile NA (13C-cyclohexane carboxylic acid) from solution at both pH levels, whereas near complete removal of a recalcitrant NA (13C-1-adamantane carboxylic acid) was observed in pH 5.0 solutions only. These results provide insight into the importance of rhizosphere pH on efficient NAFC uptake by plant root systems. Further research will determine whether OSPW phytoremediation efficiency can be enhanced using field treatment conditions that promote low rhizosphere pH levels.
Assuntos
Biodegradação Ambiental , Ácidos Carboxílicos , Hidroponia , Campos de Petróleo e Gás , Rizosfera , Salix , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Ácidos Carboxílicos/metabolismo , Poluentes Químicos da Água/metabolismo , AlbertaRESUMO
Accurate and reliable quantification of organic acids with carboxylic acid functional groups in complex biological samples remains a major analytical challenge in clinical chemistry. Issues such as spontaneous decarboxylation during ionization, poor chromatographic resolution, and retention on a reverse-phase column hinder sensitivity, specificity, and reproducibility in multiple-reaction monitoring (MRM)-based LC-MS assays. We report a targeted metabolomics method using phenylenediamine derivatization for quantifying carboxylic acid-containing metabolites (CCMs). This method achieves accurate and sensitive quantification in various biological matrices, with recovery rates from 90% to 105% and CVs ≤ 10%. It shows linearity from 0.1 ng/mL to 10 µg/mL with linear regression coefficients of 0.99 and LODs as low as 0.01 ng/mL. The library included a wide variety of structurally variant CCMs such as amino acids/conjugates, short- to medium-chain organic acids, di/tri-carboxylic acids/conjugates, fatty acids, and some ring-containing CCMs. Comparing CCM profiles of pancreatic cancer cells to normal pancreatic cells identified potential biomarkers and their correlation with key metabolic pathways. This method enables sensitive, specific, and high-throughput quantification of CCMs from small samples, supporting a wide range of applications in basic, clinical, and translational research.
Assuntos
Ácidos Carboxílicos , Metabolômica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Metabolômica/métodos , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/análise , Cromatografia Líquida/métodos , Linhagem Celular Tumoral , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Two perturbations were investigated in acidogenic co-fermentation of waste activated sludge (WAS) and food waste in continuous mesophilic fermenters: increasing the organic loading rate (OLR) and changing the WAS. A control reactor maintained an OLR of 11 gVS/(L·d), while a test reactor had a prolonged OLR change to 18 gVS/(L·d). For each OLR, two WAS were studied. The change in OLR led to differentiated fermentation product profile without compromising the fermentation yields (â¼300 mgCOD/gVS). At 11 gVS/(L·d), the product profile was dominated by acetic, butyric, and propionic acids while at 18 gVS/(L·d) it shifted to acetic acid, ethanol, and caproic acid. Reverting the OLR also reverted the fermentation profile. The biomass immigration with the WAS changed the fermentation microbial structure and introduced acetic acid-consuming methanogens, which growth was only delayed by the OLR increase. Microbial monitoring and post-fermentation tests can be used for early detection of acetic acid-consuming events.
Assuntos
Reatores Biológicos , Ácidos Carboxílicos , Fermentação , Esgotos , Ácidos Carboxílicos/metabolismo , Biomassa , Compostos Orgânicos , Ácido Acético/metabolismoRESUMO
Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.
Assuntos
Proteínas de Bactérias , Família Multigênica , Doenças das Plantas , Policetídeo Sintases , Solanum tuberosum , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Doenças das Plantas/microbiologia , Solanum tuberosum/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Vias Biossintéticas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismoRESUMO
Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
Assuntos
Ácidos Graxos Voláteis , Fermentação , Ácidos Graxos Voláteis/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Yarrowia/metabolismo , Yarrowia/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Biomassa , Biocombustíveis/microbiologia , Ácidos Carboxílicos/metabolismo , Pichia/metabolismo , Pichia/crescimento & desenvolvimentoRESUMO
Bitumen extraction in Alberta's oil sands region uses large volumes of water, leading to an abundance of oil sands process-affected water (OSPW). OSPW contains naphthenic acid fraction compounds (NAFCs) which have been found to contribute to OSPW toxicity. This study utilized a multistep treatment, coupling biological degradation with UV photocatalytic oxidation, and nutrient addition to boost the native microbial community's degradation capacity. OSPW initially contained 40-42 mg/L NAFCs with a toxicity of 3.8-3.9 TU. Initial biodegradation (Step 1) was used to remove the easily biodegradable NAFCs (11-25% removal), followed by a light or heavy dose of oxidation (Step 2) to breakdown the recalcitrant NAFCs (66-82% removal). Lastly, post-oxidation biodegradation with nutrients (Step 3) removed the residual bioavailable NAFCs (16-31% removal). By the end of the multistep treatment, the final NAFC concentrations and toxicity ranged from 5.3 to 6.8 mg/L and 1.1-1.2 TU. Analysis showed that OPSW was limited in phosphorus (below detection limit), and the addition of nutrients improved the degradation of NAFCs. Two treatments throughout the multistep treatment never received nutrients and showed minimal NAFC degradation post-oxidation. The native microbial community survived the stress from UV photocatalytic oxidation as seen by the post-oxidation NAFC biodegradation. Microbial community diversity was reduced considerably following oxidation, but increased with nutrient addition. The microbial community consisted predominately of Proteobacteria (Gammaproteobacteria and Alphaproteobacteria), and the composition shifted depending on the level of oxidation received. Possible NAFC-degrading microbes identified after a light oxidation dose included Pseudomonas, Acinetobacter and Xanthomonadales, while Xanthobacteracea and Rhodococcus were the dominant microbes after heavy oxidation. This experiment confirms that the microbial community is capable of degrading NAFCs and withstanding oxidative stress, and that degradation is further enhanced with the addition of nutrients.
Assuntos
Biodegradação Ambiental , Ácidos Carboxílicos , Campos de Petróleo e Gás , Oxirredução , Titânio , Raios Ultravioleta , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Titânio/química , Ácidos Carboxílicos/metabolismo , Alberta , Catálise , Hidrocarbonetos/metabolismoRESUMO
Microbial electrosynthesis (MES) can use renewable electricity to power microbial conversion of carbon dioxide (CO2) into carboxylates. To ensure high productivities in MES, good mass transfer must be ensured, which could be accomplished with fluidization of granular activated carbon (GAC). In this study, fluidized and fixed GAC bed cathodes were compared. Acetate production rate and current density were 42 % and 47 % lower, respectively, in fluidized than fixed bed reactors. Although similar microbial consortium dominated by Eubacterium and Proteiniphilum was observed, lowest biomass quantity was measured with fixed GAC bed indicating higher specific acetate production rates compared to fluidized GAC bed. Furthermore, charge efficiency was the highest and charge recovery in carboxylates the lowest in fixed GAC beds indicating enhanced hydrogen evolution and need for enhancing CO2 feeding to enable higher production rates of acetate. Overall, fixed GAC beds have higher efficiency for acetate production in MES than fluidized GAC beds.
Assuntos
Dióxido de Carbono , Carvão Vegetal , Eletrodos , Dióxido de Carbono/metabolismo , Carvão Vegetal/química , Acetatos/metabolismo , Ácidos Carboxílicos/metabolismo , Reatores Biológicos , Fontes de Energia Bioelétrica , BiomassaRESUMO
Inverted fatty acid ß-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid ß-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB, fadA, fadB, fadE/fabI, and tesB, which code for the key enzymes catalysing reactions of aerobic fatty acid ß-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.
Assuntos
Ácidos Carboxílicos , Escherichia coli , Ácidos Graxos , Glucose , Engenharia Metabólica , Oxirredução , Escherichia coli/metabolismo , Escherichia coli/genética , Glucose/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Ácidos Carboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genéticaRESUMO
The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.
Assuntos
Ácidos Carboxílicos , Mutação , Oxigênio , Complexo de Proteína do Fotossistema II , Cálcio/metabolismo , Cálcio/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous ß-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native ß-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous ß-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.