Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.760
Filtrar
1.
Am J Sports Med ; 52(8): 2119-2128, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857056

RESUMO

BACKGROUND: A major limitation of osteochondral allografts (OCA) is the deterioration of cartilage health associated with cell death during prolonged storage. However, little is known about the mechanisms that contribute to chondrocyte death during storage. PURPOSE/HYPOTHESIS: This study aimed to determine whether bioactive lipid metabolites accumulate in the storage media of OCA and whether they are associated with a loss of chondrocyte viability during prolonged storage. It was hypothesized that free fatty acids (FFAs) would accumulate over time in the storage media of OCA and adversely affect cartilage health during storage. STUDY DESIGN: Controlled laboratory study. METHODS: A group of 21 (n = 6-8 OCA/treatment group) fresh human hemicondylar OCA tissues and media were analyzed after 7, 28, and 68 days of prolonged cold (4°C) storage. Targeted mass spectrometry analysis was used to quantify bioactive FFAs, as well as primary (lipid hydroperoxide [ROOH]) and secondary (malondialdehyde) lipid oxidation products. Chondrocyte viability was measured using a fluorescence-based live/dead assay and confocal microscopy. RESULTS: The concentration of all targeted fatty acid metabolites in storage media was significantly increased with increased cold storage time (P < .05). ROOH was significantly higher on day 28 of cold storage. No difference in secondary ROOH products in storage media was observed. Chondrocyte viability significantly declined in both the en face and the vertical cross-sectional analysis with increased cold storage time and inversely correlated with fatty acid metabolites (P < .05). CONCLUSION: It is well established that elevated levels of certain FFAs and lipid oxidation products can alter cell function and cause cell death via lipotoxicity and other mechanisms. This work is the first to identify elevated levels of FFA metabolites and primary oxidation lipid products in the storage media from clinical OCA. The concentrations of FFA metabolites were measured at levels (>100 µM) known to induce cell death and were directly correlated with chondrocyte viability. CLINICAL RELEVANCE: These findings provide important targets for understanding why cartilage health declines during cold storage, which can be used to optimize media formulations and improve graft health.


Assuntos
Morte Celular , Condrócitos , Humanos , Condrócitos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Sobrevivência Celular , Aloenxertos , Adulto , Pessoa de Meia-Idade , Masculino , Cartilagem Articular/metabolismo , Feminino , Metabolismo dos Lipídeos
2.
Animal ; 18(6): 101181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843670

RESUMO

Spontaneous lipolysis results in the breakdown of milk fat by the lipoprotein lipase (EC: 3.1.1.34), an enzyme present in milk. Free fatty acids (FFAs) and by-products released in milk during lipolysis can alter both the organoleptic value of milk (off-flavors release) and technological properties of dairy products (decrease in creaming capabilities). Current climate change is having significant impacts on the feeding of grazing animals, with negative consequences on the availability and quality of grass. We and others have demonstrated that dietary restriction increases milk lipolysis in the cow species. However, no data about the impact of feed restriction on milk lipolysis is available in the ewe species. Thus, this paper aims to investigate the effect of feed restriction on milk characteristics with regard to lipolysis values in dairy ewes. Two groups of 24 multiparous Lacaune ewes in mid-lactation received a "non-restricted" control diet (100% of ad libitum DM intake) or a "restricted" (RESTR) diet (65% of ad libitum DM intake) according to a 2 × 2 crossover design. Milk gross composition together with lipolysis analyses were performed. Blood samples were also screened for metabolites or hormone concentrations. The RESTR treatment induced a decrease in milk production (- 21% compared with control treatment) and a modification of the metabolism of dairy ewes characterized by an increase in plasma non-esterified fatty acids (NEFAs), which represents the balance between adipose tissue mobilization and the use of NEFA by other tissues (+153%), cholesterol (+17%) and ß-hydroxybutyrate (+4 %) levels. As a result, a decrease in BW of dairy ewes was observed (-7%). Feed restriction also resulted in a decrease in milk lipolysis estimated by the milk FFA measured by the copper-soap method (-63 and -62%, respectively, for morning and evening milking) or by the reference Bureau of Dairy Industry method (-51 and -57%, respectively, for morning and evening milking). The decrease in milk spontaneous lipolysis under feed restriction was not associated with a decrease in lipoprotein lipase activity in ewes. These results will be completed with proteomic and lipidomic studies in milk samples to better understand mechanisms initiated in the ewe species specifically with regard to lipolysis in milk.


Assuntos
Ração Animal , Ácidos Graxos não Esterificados , Lactação , Lipólise , Leite , Animais , Leite/química , Leite/metabolismo , Feminino , Lactação/fisiologia , Ovinos/fisiologia , Ração Animal/análise , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Dieta/veterinária , Indústria de Laticínios , Estudos Cross-Over , Privação de Alimentos/fisiologia
3.
J Biosci Bioeng ; 138(2): 153-162, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777650

RESUMO

Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.


Assuntos
Lipomyces , Óleo de Palmeira , Óleo de Palmeira/metabolismo , Óleo de Palmeira/química , Lipomyces/metabolismo , Lipomyces/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Resíduos Industriais , Ácidos Graxos não Esterificados/metabolismo , Óleos de Plantas/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Meios de Cultura/química , Glucose/metabolismo
4.
Mar Drugs ; 22(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786615

RESUMO

A predigested product from arachidonic acid oil (ARA) and docosahexaenoic acid (DHA) oil in a 2:1 (w/w) ratio has been developed and evaluated in an in vitro digestion model. To produce this predigested lipid mixture, first, the two oils were enzymatically hydrolyzed up to 90% of free fatty acids (FFAs) were achieved. Then, these two fatty acid (FA) mixtures were mixed in a 2:1 ARA-to-DHA ratio (w/w) and enzymatically esterified with glycerol to produce a mixture of FFAs, mono-, di-, and triacylglycerides. Different glycerol ratios and temperatures were evaluated. The best results were attained at 10 °C and a glycerol-to-FA molar ratio of 3:1. The bio-accessibility of this predigested mixture was studied in an in vitro digestion model. A total of 90% of the digestion product was found in the micellar phase, which contained 30% monoacylglycerides, more than 50% FFAs, and a very small amount of triacylglycerols (3% w/w). All these data indicate an excellent bio-accessibility of this predigested mixture.


Assuntos
Ácido Araquidônico , Digestão , Ácidos Docosa-Hexaenoicos , Ácidos Docosa-Hexaenoicos/química , Ácido Araquidônico/metabolismo , Glicerol/química , Temperatura , Hidrólise , Triglicerídeos/química , Animais , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/química , Humanos
5.
Biomed Pharmacother ; 175: 116779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776681

RESUMO

Diabetic patients present increased volume and functional alterations in epicardial adipose tissue (EAT). We aimed to analyze EAT from type 2 diabetic patients and the inflammatory and cytotoxic effects induced on cardiomyocytes. Furthermore, we analyzed the cardioprotective role of apolipoprotein J (apoJ). EAT explants were obtained from nondiabetic patients (ND), diabetic patients without coronary disease (DM), and DM patients with coronary disease (DM-C) after heart surgery. Morphological characteristics and gene expression were evaluated. Explants were cultured for 24 h and the content of nonesterified fatty acids (NEFA) and sphingolipid species in secretomes was evaluated by lipidomic analysis. Afterwards, secretomes were added to AC16 human cardiomyocytes for 24 h in the presence or absence of cardioprotective molecules (apoJ and HDL). Cytokine release and apoptosis/necrosis were assessed by ELISA and flow cytometry. The EAT from the diabetic samples showed altered expression of genes related to lipid accumulation, insulin resistance, and inflammation. The secretomes from the DM samples presented an increased ratio of pro/antiatherogenic ceramide (Cer) species, while those from DM-C contained the highest concentration of saturated NEFA. DM and DM-C secretomes promoted inflammation and cytotoxicity on AC16 cardiomyocytes. Exogenous Cer16:0, Cer24:1, and palmitic acid reproduced deleterious effects in AC16 cells. These effects were attenuated by exogenous apoJ. Diabetic secretomes promoted inflammation and cytotoxicity in cardiomyocytes. This effect was exacerbated in the secretomes of the DM-C samples. The increased content of specific NEFA and ceramide species seems to play a key role in inducing such deleterious effects, which are attenuated by apoJ.


Assuntos
Tecido Adiposo , Diabetes Mellitus Tipo 2 , Inflamação , Miócitos Cardíacos , Pericárdio , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Pericárdio/metabolismo , Pericárdio/patologia , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Apoptose/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Tecido Adiposo Epicárdico
6.
Life Sci ; 350: 122672, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705456

RESUMO

Non-esterified fatty acids (NEFAs), key to energy metabolism, may become pathogenic at elevated levels, potentially eliciting immune reactions. Our laboratory's findings of reduced L-histidine in ketotic states, induced by heightened NEFA concentrations, suggest an interrelation with NEFA metabolism. This observation necessitates further investigation into the mitigating role of L-histidine on the deleterious effects of NEFAs. Our study unveiled that elevated NEFA concentrations hinder the proliferation of Bovine Mammary Epithelial Cells (BMECs) and provoke inflammation in a dose-responsive manner. Delving into L-histidine's influence on BMECs, RNA sequencing revealed 2124 genes differentially expressed between control and L-histidine-treated cells, with notable enrichment in pathways linked to proliferation and immunity, such as cell cycle and TNF signaling pathways. Further analysis showed that L-histidine treatment positively correlated with an increase in EdU-555-positive cell rate and significantly suppressed IL-6 and IL-8 levels (p < 0.05) compared to controls. Crucially, concurrent treatment with high NEFA and L-histidine normalized the number of EdU-555-positive cells and cytokine expression to control levels. Investigating the underlying mechanisms, Gab2 (Grb2-associated binder 2) emerged as a central player; L-histidine notably reduced Gab2 expression, while NEFA had the opposite effect (p < 0.05). Gab2 overexpression escalated nitric oxide (NO) production and IL6 and IL8 expression. However, L-histidine addition to Gab2-overexpressing cells resulted in NO concentrations indistinguishable from controls. Our findings collectively indicate that L-histidine can counteract NEFA-induced inflammation in BMECs by inhibiting Gab2 expression, highlighting its therapeutic potential against NEFA-related metabolic disturbances.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ácidos Graxos não Esterificados , Histidina , Inflamação , Animais , Ácidos Graxos não Esterificados/metabolismo , Bovinos , Inflamação/metabolismo , Histidina/farmacologia , Histidina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo
7.
Obesity (Silver Spring) ; 32(7): 1329-1338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764181

RESUMO

OBJECTIVE: Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS: A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS: Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS: We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.


Assuntos
Encéfalo , Glucose , Resistência à Insulina , Obesidade , Humanos , Adulto , Obesidade/metabolismo , Masculino , Feminino , Glucose/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Adulto Jovem , Glicemia/metabolismo , Espectroscopia de Ressonância Magnética , Ciclo do Ácido Cítrico , Transporte Biológico , Técnica Clamp de Glucose , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Imageamento por Ressonância Magnética
8.
Food Res Int ; 186: 114313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729689

RESUMO

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Assuntos
Acinetobacter , Técnicas de Cocultura , Microbiologia de Alimentos , Pseudomonas , Carne Vermelha , Stenotrophomonas maltophilia , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crescimento & desenvolvimento , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Carne Vermelha/microbiologia , Carne Vermelha/análise , Ovinos , Armazenamento de Alimentos , Temperatura Baixa , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Carneiro Doméstico/microbiologia , Proteólise
9.
Food Res Int ; 186: 114317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729709

RESUMO

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Assuntos
Digestão , Fórmulas Infantis , Recém-Nascido Prematuro , Leite Humano , Leite Humano/química , Leite Humano/metabolismo , Humanos , Fórmulas Infantis/química , Recém-Nascido , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Lipídeos/análise , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos , Trato Gastrointestinal/metabolismo , Modelos Biológicos , Monoglicerídeos/metabolismo , Monoglicerídeos/análise , Gorduras na Dieta/metabolismo , Gorduras na Dieta/análise
10.
STAR Protoc ; 5(2): 103086, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38795351

RESUMO

During development, the zebrafish embryo relies on its yolk sac as a nutrient source. Here, we present a protocol for modifying the free fatty acid (FFA) and triacylglycerol (TAG) content of the zebrafish yolk sac by microinjection. We describe steps for needle and injection mold preparation, FFA and TAG solution preparation, and microinjection. This protocol can elucidate how excesses of FFA and TAG affect development and modify the transcriptome of zebrafish embryos. For complete details on the use and execution of this protocol, please refer to Konadu et al. 1.


Assuntos
Embrião não Mamífero , Ácidos Graxos não Esterificados , Microinjeções , Triglicerídeos , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microinjeções/métodos , Triglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Embrião não Mamífero/metabolismo , Saco Vitelino/metabolismo
11.
Pharm Res ; 41(6): 1217-1232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740663

RESUMO

PURPOSE: Polysorbates are the most commonly used surfactants in formulations to stabilize therapeutic proteins against interfacial stresses. Polysorbates can undergo oxidative or enzyme-mediated hydrolytic degradation to produce free fatty acids (FFAs) and subvisible particles in formulations. To determine which product related variables contribute to PS20 degradation, we investigated the effects of storage temperature, formulation, pH, presence of hydrolytic enzymes, and specific fatty acid composition on different grades of PS20 in relation to their PS20 degradation profile and consequently the quality of protein drug products. METHODS: Bevacizumab and T-DM1 were reformulated in the freshly prepared therapeutic protein formulations containing either compendial PS20 or non-compendial PS20 with high % lauric acid and spiked with exogenous esterase or lipase. The release of FFAs and formation of particles were monitored at 4°C and 37°C. Protein quality was assessed for secondary structures, purity, and biological activity. RESULTS: Hydrolytic release of FFAs and formation of subvisible particles were found to be dependent on grades of PS20, types of enzymes used, incubation temperature, and pH. Esterase- or lipase-mediated degradation of PS20 and formation of subvisible particles in drug formulation showed no significant impact on the biological activity and stability of therapeutic proteins against degradation or aggregation. CONCLUSIONS: Our study suggests that degradation of PS20 and formation of FFA particles depend on the fatty acid composition of PS20, types of hydrolytic enzymes, pH, and temperature. The presence of FFA subvisible particles showed no significant impact on the purity and biological activity of the therapeutic proteins under the tested conditions.


Assuntos
Lipase , Polissorbatos , Tensoativos , Polissorbatos/química , Concentração de Íons de Hidrogênio , Hidrólise , Tensoativos/química , Lipase/química , Lipase/metabolismo , Temperatura , Estabilidade Proteica , Estabilidade de Medicamentos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/química , Composição de Medicamentos/métodos , Humanos , Esterases/metabolismo , Excipientes/química
12.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578954

RESUMO

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , PTEN Fosfo-Hidrolase , Animais , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Camundongos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Ácido Oleico/farmacologia , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Secreção de Insulina/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Ratos Sprague-Dawley
13.
Medicine (Baltimore) ; 103(16): e37874, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640304

RESUMO

RATIONALE: X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS: A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES: Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS: The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES: At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS: This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Insuficiência Adrenal , Adrenoleucodistrofia , Adulto , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Ácidos Graxos não Esterificados/metabolismo , Mutação , Paraplegia/genética , Fenótipo
14.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38659415

RESUMO

Many physiological functions are regulated by free fatty acids (FFA). Recently, the discovery of FFA-specific G protein-coupled receptors (FFARs) has added to the complexity of their actions at the cellular level. The study of FFAR in cattle is still in its earliest stages focusing mainly on dairy cows. In this study, we set out to map the expression of genes encoding FFARs in 6 tissues of beef cattle. We also investigated the potential effect of dietary forage nature on FFAR gene expression. To this end, 16 purebred Charolais bulls were fed a grass silage ration or a maize silage ration (n = 8/group) with a forage/concentrate ratio close to 60:40 for 196 d. The animals were then slaughtered at 485 ±â€…42 d and liver, spleen, ileum, rectum, perirenal adipose tissue (PRAT), and Longissimus Thoracis muscle were collected. FFAR gene expression was determined by real-time quantitative PCR. Our results showed that of the five FFARs investigated, FFAR1, FFAR2, FFAR3, and GPR84 are expressed (Ct < 30) in all six tissues, whereas FFAR4 was only expressed (Ct < 30) in PRAT, ileum, and rectum. In addition, our results showed that the nature of the forage, i.e., grass silage or maize silage, had no effect on the relative abundance of FFAR in any of the tissues studied (P value > 0.05). Taken together, these results open new perspectives for studying the physiological role of these receptors in beef cattle, particularly in nutrient partitioning during growth.


Free fatty acids (FFA) are key modulators of bovine physiology. Recently, it has been discovered that some G protein-coupled receptors, termed free fatty acid receptors (FFARs), may help mediate the action of FFA at the cellular level. In humans and rodents, a growing body of evidence has shown that i) FFARs are expressed in a wide range of tissues and ii) FFARs are involved in the regulation of major FFA-dependent physiological processes (inflammation, feed intake, insulin release, etc.). In cattle, information on FFAR expression and function in tissues are scarce and mainly concern dairy cows. In this study, we showed that FFARs are expressed in 6 different tissues of beef cattle: adipose tissue, muscle tissue, ileum, rectum, liver, and spleen. We also showed that the nature of forage fed to the animals (i.e., grass silage vs. maize silage) has no effect on FFARs gene expression.


Assuntos
Dieta , Ácidos Graxos não Esterificados , Receptores Acoplados a Proteínas G , Silagem , Animais , Bovinos/genética , Bovinos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Silagem/análise , Ácidos Graxos não Esterificados/metabolismo , Dieta/veterinária , Ração Animal/análise , Zea mays/genética , Expressão Gênica , Regulação da Expressão Gênica
15.
J Phys Chem B ; 128(16): 3833-3843, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603528

RESUMO

The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (SCD), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogen-bond network was formed between the skin-lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin-lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.


Assuntos
Ceramidas , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Ligação de Hidrogênio , Colesterol/química , Colesterol/metabolismo , Epiderme/metabolismo , Epiderme/química , Etanol/química , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Pele/metabolismo , Pele/química , Humanos
16.
Cell Rep ; 43(5): 114132, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656871

RESUMO

Insulin-PI3K signaling controls insulin secretion. Understanding this feedback mechanism is crucial for comprehending how insulin functions. However, the role of adipocyte insulin-PI3K signaling in controlling insulin secretion in vivo remains unclear. Using adipocyte-specific PI3Kα knockout mice (PI3KαAdQ) and a panel of isoform-selective PI3K inhibitors, we show that PI3Kα and PI3Kß activities are functionally redundant in adipocyte insulin signaling. PI3Kß-selective inhibitors have no effect on adipocyte AKT phosphorylation in control mice but blunt it in adipocytes of PI3KαAdQ mice, demonstrating adipocyte-selective pharmacological PI3K inhibition in the latter. Acute adipocyte-selective PI3K inhibition increases serum free fatty acid (FFA) and potently induces insulin secretion. We name this phenomenon the adipoincretin effect. The adipoincretin effect operates in fasted mice with increasing FFA and decreasing glycemia, indicating that it is not primarily a control system for blood glucose. This feedback control system defines the rates of adipose tissue lipolysis and chiefly controls basal insulin secretion during fasting.


Assuntos
Adipócitos , Jejum , Secreção de Insulina , Insulina , Camundongos Knockout , Fosfatidilinositol 3-Quinases , Animais , Adipócitos/metabolismo , Insulina/metabolismo , Camundongos , Jejum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/sangue , Lipólise , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
17.
J Reprod Dev ; 70(3): 169-176, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644218

RESUMO

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.


Assuntos
Proteínas de Fase Aguda , Proteínas de Transporte , Líquido Folicular , Células da Granulosa , Inflamação , Glicoproteínas de Membrana , Folículo Ovariano , Animais , Feminino , Líquido Folicular/metabolismo , Bovinos , Células da Granulosa/metabolismo , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Folículo Ovariano/metabolismo , Glicoproteínas de Membrana/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Lipopolissacarídeos/farmacologia , Oócitos/metabolismo , Estradiol/metabolismo , Fertilização in vitro/veterinária , Ácidos Graxos não Esterificados/metabolismo , Doenças dos Bovinos/metabolismo , Aromatase/metabolismo
18.
Brain Behav Immun ; 119: 236-250, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604269

RESUMO

Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.


Assuntos
Ansiedade , Dieta Hiperlipídica , Ácidos Graxos não Esterificados , Hipocampo , Camundongos Endogâmicos C57BL , Microglia , Animais , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Camundongos , Masculino , Ansiedade/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Depressão/metabolismo , Comportamento Animal , Minociclina/farmacologia
19.
Exp Eye Res ; 243: 109888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583754

RESUMO

Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 µmol/l in the blood to 1-3 µmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.


Assuntos
Doença de Alzheimer , Biomarcadores , Catarata , Ácidos Graxos não Esterificados , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/sangue , Catarata/metabolismo , Catarata/sangue , Catarata/patologia , Catarata/diagnóstico , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/sangue , Biomarcadores/sangue , Biomarcadores/metabolismo , Albumina Sérica/metabolismo , Envelhecimento , Cristalino/metabolismo
20.
JCI Insight ; 9(9)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602778

RESUMO

BACKGROUND: Upper-body obesity (UBO) results in insulin resistance with regards to free fatty acid (FFA) release; how this differs by fat depot and sex between adults with UBO and lean adults is unknown. We tested the hypothesis that insulin suppression of FFA release from the splanchnic bed, leg fat, and upper-body nonsplanchnic (UBNS) adipose tissue would be impaired in UBO. METHODS: Fourteen volunteers with UBO (7 men and 7 women) and 14 healthy volunteers with normal weight (7 men and 7 women) participated in studies that included femoral artery, femoral vein, and hepatic vein catheterization. We then measured leg and splanchnic plasma flow as well as FFA kinetics (using isotopic tracers) under overnight fasting as well as low- and high-dose insulin infusion using the insulin clamp technique. RESULTS: We found the expected insulin resistance in UBO; the most quantitatively important difference between adults with UBO and lean adults was greater FFA release from UBNS adipose tissue when plasma insulin concentrations were in the postprandial, physiological range. There were obesity, but not sex, differences in the regulation of splanchnic FFA release and sex differences in the regulation of leg FFA release. CONCLUSION: Reversing the defects in insulin-regulated UBNS adipose tissue FFA release would have the greatest effect on systemic FFA abnormalities in UBO. FUNDING: These studies were supported by the US Public Health Service (grants DK45343 and DK40484), the Novo Nordic Foundation (grant NNF18OC0031804 and NNF16OC0021406), and the Independent Research Fund Denmark (grant 8020-00420B).


Assuntos
Tecido Adiposo , Ácidos Graxos não Esterificados , Resistência à Insulina , Insulina , Lipólise , Obesidade , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Tecido Adiposo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/sangue , Insulina/metabolismo , Obesidade/metabolismo , Período Pós-Prandial , Magreza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...