Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.650
Filtrar
1.
Sci Rep ; 14(1): 22824, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354093

RESUMO

Nitrogen deficiency in low organic matter soils significantly reduces crop yield and plant health. The effects of foliar applications of indole acetic acid (IAA), trehalose (TA), and nanoparticles-coated urea (NPCU) on the growth and physiological attributes of tomatoes in nitrogen-deficient soil are not well documented in the literature. This study aims to explore the influence of IAA, TA, and NPCU on tomato plants in nitrogen-deficient soil. Treatments included control, 2mM IAA, 0.1% TA, and 2mM IAA + 0.1% TA, applied with and without NPCU. Results showed that 2mM IAA + 0.1% TA with NPCU significantly improved shoot length (~ 30%), root length (~ 63%), plant fresh (~ 48%) and dry weight (~ 48%), number of leaves (~ 38%), and leaf area (~ 58%) compared to control (NPCU only). Additionally, significant improvements in chlorophyll content, total protein, and total soluble sugar, along with a decrease in antioxidant activity (POD, SOD, CAT, and APX), validated the effectiveness of 2mM IAA + 0.1% TA with NPCU. The combined application of 2mM IAA + 0.1% TA with NPCU can be recommended as an effective strategy to enhance tomato growth and yield in nitrogen-deficient soils. This approach can be integrated into current agricultural practices to improve crop resilience and productivity, especially in regions with poor soil fertility. To confirm the efficacy of 2mM IAA + 0.1% TA with NPCU in various crops and climatic conditions, additional field studies are required.


Assuntos
Ácidos Indolacéticos , Nitrogênio , Solo , Solanum lycopersicum , Trealose , Ureia , Óxido de Zinco , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Solo/química , Trealose/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanopartículas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fertilizantes
2.
Funct Plant Biol ; 512024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39388429

RESUMO

Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.


Assuntos
Antioxidantes , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Vitis , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Vitis/anatomia & histologia , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Água/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Secas , Proteínas de Plantas/metabolismo , Fenóis
3.
Int J Med Mushrooms ; 26(11): 41-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39241162

RESUMO

The present study was carried out to optimize the strain and evaluate the effect of amendment of growth media with different hormone concentrations for enhancing mycelium growth of lion's mane mushroom Hericium erinaceus under in vitro conditions. Among the five strains of H. erinaceus, He-04 strain showed maximum average GR (GRavr) of 4.78 mm d-1. Five different media, potato dextrose agar (PDA), malt extract agar, sawdust extract agar, wheat straw extract agar, and rice straw extract agar, amended with four concentrations (10, 20, 30, and 40 ppm) of gibberellic acid, kinetin, and indole acetic acid, were evaluated for promotion of mycelial growth of H. erinaceus. PDA was observed to be the best media promoting the mycelial growth of H. erinaceus. The highest mycelial GRavr 8.47 mm d-1 was observed in PDA amended with indole acetic acid (10 ppm) followed by gibberellic acid and kinetin (30 ppm) decreasing mycelial GRav to 8.15 and 7.75mm d-1, respectively. Temperature of 25°C and pH 7.0 was found to be the best for mycelium growth of H. erinaceus.


Assuntos
Meios de Cultura , Giberelinas , Hericium , Ácidos Indolacéticos , Micélio , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Giberelinas/farmacologia , Meios de Cultura/química , Hericium/crescimento & desenvolvimento , Hericium/química , Cinetina/farmacologia , Temperatura , Reguladores de Crescimento de Plantas/farmacologia , Concentração de Íons de Hidrogênio
4.
Pestic Biochem Physiol ; 204: 106072, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277417

RESUMO

The synthetic auxin 2,4-D and the 4-hydroxyphenylpyruvate dioxygenase inhibitor pyrasulfotole are phloem-mobile post-emergence herbicides, the latter applied in co-formulation with either bromoxynil (a contact herbicide causing leaf desiccation) or MCPA (another synthetic auxin). Previous studies have shown a wide range of 2,4-D translocation phenotypes in resistant populations of the agricultural weed Raphanus raphanistrum, but it was hypothesised that enhanced movement out of the apical meristem could contribute to resistance. Little is known about pyrasulfotole translocation or the effect of bromoxynil on pyrasulfotole movement. Therefore, the behaviour of pyrasulfotole and 2,4-D applied to the growing point of susceptible and resistant R. raphanistrum seedlings was assessed, along with the effect of bromoxynil on pyrasulfotole translocation. The small amount of herbicide directly contacting the growing point after spraying was sufficient to induce herbicide symptoms, and there was no enhancement of translocation away from the growing point in either pyrasulfotole- or 2,4-D-resistant populations. Bromoxynil had a slightly inhibitory effect on pyrasulfotole translocation in some populations, somewhat negating the minor differences observed among populations when pyrasulfotole was applied alone. Resistance to pyrasulfotole could not explained by enhanced metabolism or vacuolar sequestration of the herbicide. Overall, differential translocation in either the treated leaves or apical meristems does not appear to be a major determinant of resistance to pyrasulfotole or 2,4-D.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Resistência a Herbicidas , Herbicidas , Raphanus , Herbicidas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Raphanus/efeitos dos fármacos , Raphanus/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Pironas/farmacologia , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Isoxazóis , Nitrilas , Sulfonas
5.
Nutrients ; 16(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275325

RESUMO

We present results on the potential protective antioxidant properties of indole-3-butyric acid. Indole-3-butyric acid is an indole derivative defined as an auxin and widely known as a plant growth regulator. It naturally occurs in Arabidopsis thaliana, which is applied as a model plant in genetic studies. Oxidative damage to membrane lipids (lipid peroxidation; LPO) in porcine thyroid homogenates was induced by Fenton reaction substrates (Fe2+ + H2O2). Iron (Fe2+) was used in very high concentrations of 1200, 600, 300, 150, 75, 37.5, 18.75, 9.375, 4.687, and 2.343 µM. Indole-3-butyric acid (10.0, 5.0, 2.5, 1.25, and 0.625 mM) was applied to check whether it prevents the above process. The LPO level, expressed as malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration, was measured spectrophotometrically. Expectedly, Fenton reaction substrates, in a Fe2+ concentration-dependent manner, increased LPO level, with the lowest effective concentration of iron being 9.375 µM. In the case of almost all concentrations of indole-3-butyric acid, this auxin has exhibited very promising antioxidant protection, with the most effective concentrations being 10.0 and 5.0 mM; however, as low concentrations of indole-3-butyric acid at 1.25 mM was still effective. Indole-3-butyric acid used alone did not change the basal level of LPO, which is a favourable effect. To summarise, indole-3-butyric acid has protective antioxidant properties against experimentally induced oxidative damage to membrane lipids in the thyroid, and this is for the first time documented in the literature. This compound can be considered a natural protective agent present in plants, which can serve as a dietary nutrient.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Indóis , Ferro , Peroxidação de Lipídeos , Estresse Oxidativo , Glândula Tireoide , Animais , Indóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Ferro/metabolismo , Suínos , Antioxidantes/farmacologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Ácidos Indolacéticos/farmacologia , Malondialdeído/metabolismo
6.
Pestic Biochem Physiol ; 204: 106099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277422

RESUMO

Echinochloa crus-galli (L.) P. Beauv is a monocotyledonous weed that seriously infests rice fields. Florpyrauxifen-benzyl, a novel synthetic auxin herbicide commercialized in China in 2018, is an herbicide for controlling E. crus-galli. However, a suspected resistant population (R) collected in 2012 showed resistance to the previously unused florpyrauxifen-benzyl. Whole-plant dose-response bioassay indicated that the R population evolved high resistance to quinclorac and florpyrauxifen-benzyl. Pretreatment with P450 inhibitors did not influence the GR50 of E. crus-galli to florpyrauxifen-benzyl. The expression of target receptor EcAFB4 was down-regulated in the R population, leading to the reduced response to florpyrauxifen-benzyl (suppresses over-production of ethylene and ABA). We verified this resistance mechanism in the knockout OsAFB4 in Oryza sativa L. The Osafb4 mutants exhibited high resistance to florpyrauxifen-benzyl and moderate resistance to quinclorac. Furthermore, DNA methylation in the EcAFB4 promoter regulated its low expression in the R population after florpyrauxifen-benzyl treatment. In summary, the low expression of the auxin receptor EcAFB4 confers target resistance to the synthetic auxin herbicide florpyrauxifen-benzyl in the R- E. crus-galli.


Assuntos
Echinochloa , Resistência a Herbicidas , Herbicidas , Proteínas de Plantas , Echinochloa/efeitos dos fármacos , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Quinolinas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo
7.
Dev Growth Differ ; 66(7): 384-393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39305158

RESUMO

The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.


Assuntos
Ácidos Indolacéticos , Animais , Camundongos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteólise/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Degrons
8.
Food Chem Toxicol ; 192: 114917, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128690

RESUMO

Indole-3-acetic acid (IAA), a protein-bound uremic toxin, has been linked to cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. This study explores the influence of IAA (125 mg/kg) on cardiovascular changes in adenine sulfate-induced CKD rats. HPLC analysis revealed that IAA-exposed CKD rats had lower excretion and increased circulation of IAA compared to both CKD and IAA control groups. Moreover, echocardiography indicated that CKD rats exposed to IAA exhibited heart enlargement, thickening of the myocardium, and cardiac hypertrophy in contrast to CKD or IAA control group. Biochemical analyses supported the finding that IAA-induced CKD rats had elevated serum levels of c-Tn-I, CK-MB, and LDH; there was also evidence of oxidative stress in cardiac tissues, with a significant decrease in SOD and CAT levels, as well as an increase in MDA levels. The gene expression analysis found significant increases in ANP, BNP, ß-MHC, TNF-α, IL-1ß, and NF-κB levels in IAA-exposed CKD groups in contrast to the CKD or IAA control group. In addition, higher cardiac fibrosis markers, including Col-I and Col-III. The findings of this study indicate that IAA could trigger cardiovascular inflammation and fibrosis in CKD conditions.


Assuntos
Fibrose , Ácidos Indolacéticos , Inflamação , Insuficiência Renal Crônica , Animais , Ácidos Indolacéticos/farmacologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Masculino , Ratos , Inflamação/induzido quimicamente , Modelos Animais de Doenças , Doenças Cardiovasculares , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia
9.
Bioresour Technol ; 410: 131299, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153691

RESUMO

Phytohormones play a role in regulating microalgae cells tolerance to adversity. This paper examines the effects of different temperatures (20 °C, 25 °C, 30 °C and 35 °C) on the physiological characteristics and endogenous phytohormones of the Isochrysis Zhanjiangensis (IZ) and its mutagenic strain (3005). The results showed that the endogenous phytohormones indole acetic acid (IAA) and jasmonic acid (JA) exhibited significant differences (P<0.05) between the two strains. The addition of 0.5 mg·L-1 exogenous JA inhibitor ibuprofen (IBU) improved cell growth of IZ, and was extremely effective in the accumulation of polysaccharides, which accounted for 33.25 %. Transcriptomic analyses revealed that genes involved in photosynthesis, such as PetC and PsbO, exhibited significantly elevated expression of the strain IZ, while the pathways related to JA synthesis may be the factor affecting microalgae temperature tolerance. This study provides a theoretical foundation for elucidating the underlying mechanisms and potential applications for high temperature tolerance in IZ.


Assuntos
Haptófitas , Microalgas , Oxilipinas , Reguladores de Crescimento de Plantas , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Haptófitas/metabolismo , Haptófitas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Proliferação de Células/efeitos dos fármacos , Temperatura , Ibuprofeno/farmacologia , Fotossíntese/efeitos dos fármacos , Polissacarídeos/metabolismo
10.
J Agric Food Chem ; 72(34): 19028-19039, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150252

RESUMO

The somatic embryo (SE) has bipolar characteristics, which is an ideal material for large-scale microproduction of woody plants represented by apples, and the somatic embryo is also an excellent receptor for genetic transformation. The formation of embryogenic cells is a prerequisite for somatic embryogenesis to occur. The embryogenic cells of apples cannot be obtained without induction of exogenous auxin, but how the auxin pathway regulates this process remains unknown. In this study, via RNA sequencing, MdARF5 and MdAHL15 were identified as differentially expressed genes involved in this process. Overexpression of MdARF5 and MdAHL15 induced the formation and proliferation of embryogenic cells and thus substantially shortened the induction cycle and improved the somatic embryo proliferation efficiency. A yeast one-hybrid assay showed that MdARF5 can directly bind to the promoter of MdAHL15. ß-Glucuronidase (GUS) and dual-luciferase reporter assays revealed that MdARF5 activation of MdAHL15 transcription was substantial. In conclusion, our results suggest that MdAHL15 is induced by auxin and promotes the formation of embryogenic cells in early somatic embryogenesis via the positive regulation of MdARF5 in apples. The results will provide a theoretical basis for somatic embryogenesis-based development, reproduction, and transgenic breeding in apples.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Técnicas de Embriogênese Somática de Plantas
11.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125650

RESUMO

Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas , Transcriptoma , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/metabolismo , Camellia sinensis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
12.
Physiol Plant ; 176(4): e14459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109439

RESUMO

Climate change induces significant abiotic stresses that adversely affect crop yields. One promising solution to improve plant resilience under adverse conditions is the application of exogenous salicylic acid (SA). However, its negative effects on growth and development are a concern. Encapsulation with protective materials like amorphous silica and chitosan has demonstrated a controlled release of SA, minimizing the detrimental impacts. In this work, we elucidate the physiological mechanisms behind this protective mechanism. We employed in vitro cultivation of Arabidopsis, comparing plant responses to both free and encapsulated SA under conditions of salt or mannitol stress, combined or not with high temperature (30°C). Plants treated with encapsulated SA displayed an enhanced tolerance to these stresses that was due, at least in part, to the maintenance of physiological endogenous SA levels, which in turn regulate indole-3-acetic acid (IAA) homeostasis. The activity of the Arabidopsis "DR5::GFP" reporter line supported this finding. Unlike plants treated with free SA (with altered DR5 activity under stress), those treated with encapsulated SA maintained similar activity levels to control plants. Moreover, stressed plants treated with free SA overexpressed genes involved in the SA biosynthesis pathway, leading to increased SA accumulation in roots and rosettes. In contrast, plants treated with encapsulated SA under stress did not exhibit increased expression of EDS1, PAL1, and NPR1 in roots, or of PAL1, PBS3, and NPR1 in rosettes. This indicates that these plants likely experienced lower stress levels, possibly because the encapsulated SA provided sufficient defense activation without triggering pleiotropic effects.


Assuntos
Arabidopsis , Homeostase , Reguladores de Crescimento de Plantas , Ácido Salicílico , Estresse Fisiológico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
13.
BMC Genomics ; 25(1): 788, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148037

RESUMO

BACKGROUND: Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS: To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION: The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.


Assuntos
Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas , Ácidos Indolacéticos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Acetilação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Histonas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Inibidores de Histona Desacetilases/farmacologia
14.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062790

RESUMO

In our research, we utilized six small-fruited pepper germplasms as materials, selected cotyledons with the petiole and hypocotyls as explants, and conducted in vitro regeneration studies. Our outcomes specify that the most suitable explant is cotyledon with the petiole, and the suitable genotype is HNUCA341. The optimal medium for inducing and elongating adventitious buds for this genotype is Murashige and Skoog medium (MS) + 9.12 µM Zeatin (ZT) + 0.57 µM 3-Indoleacetic acid (IAA), with a bud induction rate of 44.4%. The best rooting induction medium is MS + 1.14 µM IAA, with a rooting rate of 86.7%. Research on the addition of exogenous hormones has revealed that the induction speed of buds in small-fruited pepper (HNUCA341) in the combination of ZT and IAA hormones (abbreviated as ZI) is quicker, and the induction effect is better. The histological observations indicate that ZI treatment accelerates the initiation of explant division and differentiation, causing a shorter duration of vascular-bundle tissue production. The plant hormone signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including ARR9 (LOC107843874, LOC107843885), ARR4 (LOC107848380, LOC107862455), AHK4 (LOC107870540), AHP1 (LOC107839518), LAX2 (LOC107846008), SAUR36 (LOC107852624), IAA8 (LOC107841020), IAA16 (LOC107839415), PYL4 (LOC107843441), and PYL6 (LOC107871127); these significantly enriched genes may be associated with in vitro regeneration. In addition, the carbon metabolism pathway and plant mitogen-activated protein kinase (MAPK) signaling pathway are also significantly enriched in KEGG. The results of the Gene Ontology (GO) analysis revealed that differentially expressed genes related to carbon metabolism and fixation, photosynthesis and MAPK signaling pathways were upregulated under ZI treatment. It was found that they might be associated with enhanced regeneration in vitro. Furthermore, we also screened out differentially expressed transcription factors, primarily from the MYB, bHLH, AP2/ERF, and NAC families. Overall, our work accumulated important data for the in-depth analysis of the molecular mechanism of in vitro regeneration of pepper, and provides valuable germplasm for establishing an efficient stable pepper genetic-transformation system based on tissue culture.


Assuntos
Capsicum , Cotilédone , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Regeneração , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Regeneração/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Perfilação da Expressão Gênica
15.
Physiol Plant ; 176(4): e14443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039017

RESUMO

The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.


Assuntos
Ácido Abscísico , Ácidos Indolacéticos , Caules de Planta , Estresse Fisiológico , Xilema , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Xilema/efeitos dos fármacos , Xilema/fisiologia , Xilema/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Secas , Solo/química , Salinidade , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia
16.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982341

RESUMO

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores de Crescimento de Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Giberelinas/farmacologia , Giberelinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ésteres
17.
Plant Signal Behav ; 19(1): 2379695, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39074041

RESUMO

To investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, Sarcozygium xanthoxylon, Nitraria tangutorum, and Ammopiptanthus mongolicus, which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 µmol/L) and exogenous melatonin concentration (0, 100, 200, 300 µmol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin. The results indicate that under different concentrations of exogenous IAA and melatonin, the germination rate and vigor of the three desert plant species in saline-alkaline soil improved. However, as the concentration of melatonin increased, the germination rate and vigor of these desert plants were inhibited. Whereas, plant height, root length, leaf length, fresh weight, dry weight, and root vigor of the three desert plants were alleviated under different conditions of exogenous IAA and exogenous melatonin. under the action of two exogenous hormones, the low concentration of melatonin decreased their malondialdehyde content and increased their proline content. As melatonin levels increased, the activity of antioxidant enzymes also rose initially, followed by a subsequent decline. This study highlights the synergistic effects of two exogenous hormones on the critical role of cell osmomodulators and antioxidant enzyme activity in combating salinity damage in three desert plants.


Assuntos
Clima Desértico , Ácidos Indolacéticos , Melatonina , Sementes , Solo , Melatonina/farmacologia , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Solo/química , Sementes/efeitos dos fármacos , Germinação/efeitos dos fármacos , Salinidade , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
18.
Sci Rep ; 14(1): 17694, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085421

RESUMO

The application of exogenous paclobutrazol (PP333) can improve the ability of winter warming to promote flowering in Chaenomeles speciosa, but the underlying mechanism is unclear. In this study, the cultivar 'Changshouguan' was sprayed with different concentrations of PP333 during flower bud differentiation, and the changes in the anatomical structures and physiological characteristics of the flower buds during the differentiation process, as well as the growth state of the flower buds and the effect on flowering promotion after winter warming treatment, were comprehensively investigated. The results showed that different concentrations of PP333 could advance the flowering time of 'Changshouguan' by 15-24 d under the warming treatment and increase the flowering duration to 17 d compared with those under the warming treatment alone (CK), and 1000 mg/L was the best treatment. Compared with the CK treatment, the PP333 treatment decreased the contents of indole acetic acid (IAA) and gibberellic acid (GAs) and increased the contents of zeatin ribosides (ZRs) and abscisic acid (ABA), thus changing the balance of hormones during flower bud differentiation. The inflection point (low point) of the curve shapes of the ZRs/GAs and ZRs/IAA ratios appeared significantly earlier, which showed a pattern consistent with soluble sugar and protein content and antioxidant activity. Interestingly, the above changes also corresponded to earlier flowering times during the warming process. Taken together, these results indicate that spraying an appropriate concentration of PP333 in the early stage of 'Changshouguan' flower bud differentiation promotes the early differentiation of flower buds and early flowering under winter warming treatment by altering their endogenous hormone content and homeostasis and changing their physiological state. The key to maintaining a relatively long flowering period in plants in the PP333 treatment group after flowering promotion was the increased accumulation of sugars and proteins.


Assuntos
Flores , Reguladores de Crescimento de Plantas , Estações do Ano , Triazóis , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Triazóis/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Rosaceae/fisiologia , Rosaceae/efeitos dos fármacos , Rosaceae/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
19.
Sci Rep ; 14(1): 14801, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926600

RESUMO

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Assuntos
Capsicum , Frutas , Giberelinas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
20.
Genes (Basel) ; 15(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927696

RESUMO

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Regiões Promotoras Genéticas , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...