Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1375312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779562

RESUMO

Competence development is essential for bacterial transformation since it enables bacteria to take up free DNA from the surrounding environment. The regulation of teichoic acid biosynthesis is tightly controlled during pneumococcal competence; however, the mechanism governing this regulation and its impact on transformation remains poorly understood. We demonstrated that a defect in lipoteichoic acid ligase (TacL)-mediated lipoteichoic acids (LTAs) biosynthesis was associated with impaired pneumococcal transformation. Using a fragment of tacL regulatory probe as bait in a DNA pulldown assay, we successfully identified several regulatory proteins, including ComE. Electrophoretic mobility shift assays revealed that phosphomimetic ComE, but not wild-type ComE, exhibited specific binding to the probe. DNase I footprinting assays revealed the specific binding sequences encompassing around 30 base pairs located 31 base pairs upstream from the start codon of tacL. Expression of tacL was found to be upregulated in the ΔcomE strain, and the addition of exogenous competence-stimulating peptide repressed the tacL transcription in the wild-type strain but not the ΔcomE mutant, indicating that ComE exerted a negative regulatory effect on the transcription of tacL. Mutation in the JH2 region of tacL upstream regulatory sequence led to increased LTAs abundance and displayed higher transformation efficiency. Collectively, our work identified the regulatory mechanisms that control LTAs biosynthesis during competence and thereby unveiled a repression mechanism underlying pneumococcal transformation.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Streptococcus pneumoniae , Ácidos Teicoicos , Transformação Bacteriana , Ácidos Teicoicos/biossíntese , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/biossíntese , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas , Competência de Transformação por DNA , Mutação , Ligação Proteica , Ligases/genética , Ligases/metabolismo
2.
mBio ; 15(6): e0115724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757970

RESUMO

Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc2DAG. By contrast, in cells lacking LtaA, the flippase of Glc2DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus.


Assuntos
Proteínas de Bactérias , Lipopolissacarídeos , Proteínas de Membrana , Staphylococcus aureus , Ácidos Teicoicos , Ácidos Teicoicos/biossíntese , Ácidos Teicoicos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Parede Celular/metabolismo , Membrana Celular/metabolismo
3.
Microbiol Spectr ; 10(6): e0342222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377886

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) strains pose major treatment challenges due to their innate resistance to most ß-lactams under standard in vitro antimicrobial susceptibility testing conditions. A novel phenotype among MRSA, termed "NaHCO3 responsiveness," where certain strains display increased susceptibility to ß-lactams in the presence of NaHCO3, has been identified among a relatively large proportion of MRSA isolates. One underlying mechanism of NaHCO3 responsiveness appears to be related to decreased expression and altered functionality of several genes and proteins involved in cell wall synthesis and maturation. Here, we studied the impact of NaHCO3 on wall teichoic acid (WTA) synthesis, a process intimately linked to peptidoglycan (PG) synthesis and functionality, in NaHCO3-responsive versus -nonresponsive MRSA isolates. NaHCO3 sensitized responsive MRSA strains to cefuroxime, a specific penicillin-binding protein 2 (PBP2)-inhibitory ß-lactam known to synergize with early WTA synthesis inhibitors (e.g., ticlopidine). Combining cefuroxime with ticlopidine with or without NaHCO3 suggested that these latter two agents target the same step in WTA synthesis. Further, NaHCO3 decreased the abundance and molecular weight of WTA only in responsive strains. Additionally, NaHCO3 stimulated increased autolysis and aberrant cell division in responsive strains, two phenotypes associated with disruption of WTA synthesis. Of note, studies of key genes involved in the WTA biosynthetic pathway (e.g., tarO, tarG, dltA, and fmtA) indicated that the inhibitory impact of NaHCO3 on WTA biosynthesis in responsive strains likely occurred posttranslationally. IMPORTANCE MRSA is generally viewed as resistant to standard ß-lactam antibiotics. However, a NaHCO3-responsive phenotype is observed in a substantial proportion of clinical MRSA strains in vitro, i.e., isolates which demonstrate enhanced susceptibility to standard ß-lactam antibiotics (e.g., oxacillin) in the presence of NaHCO3. This phenotype correlates with increased MRSA clearance in vivo by standard ß-lactam antibiotics, suggesting that patients with infections caused by such MRSA strains might be amenable to treatment with ß-lactams. The mechanism(s) behind this phenotype is not fully understood but appears to involve mecA-PBP2a production and maturation axes. Our study adds significantly to this body of knowledge in terms of additional mechanistic targets of NaHCO3 in selected MRSA strains. This investigation demonstrates that NaHCO3 has direct impacts on S. aureus wall teichoic acid biosynthesis in NaHCO3-responsive MRSA. These findings provide an additional target for new agents being designed to synergistically kill MRSA using ß-lactam antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Bicarbonato de Sódio , Ácidos Teicoicos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamas/farmacologia , Cefuroxima/farmacologia , Parede Celular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Monobactamas/farmacologia , Bicarbonato de Sódio/farmacologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese
4.
Mol Microbiol ; 116(2): 589-605, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33949015

RESUMO

Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.


Assuntos
Lipopolissacarídeos/biossíntese , Peptidoglicano/biossíntese , Sinais Direcionadores de Proteínas/fisiologia , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Ciclo Celular/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos
5.
J Struct Biol ; 213(2): 107733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819634

RESUMO

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.


Assuntos
Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotidiltransferases/química , Oxirredutases/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxirredutases/metabolismo , Pentosefosfatos/metabolismo , Multimerização Proteica , Ribulosefosfatos/metabolismo , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia
6.
Benef Microbes ; 11(8): 791-802, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191777

RESUMO

Lipoteichoic acid (LTA) is a key component of the cell wall of most Gram-positive bacteria and plays many structural and functional roles. In probiotic lactobacilli, the function of LTA in mediating bacteria/host cross-talk has been evidenced and it has been postulated that, owing to its anionic nature, LTA may play a role in toxic metal sequestration by these bacteria. However, studies on this last aspect employing strains unable to synthesise LTA are lacking. We have inactivated the LTA polymerase encoding gene ltaS in two different Lactobacillus plantarum strains. Analysis of LTA contents in wild-type and ltaS mutant strains corroborated the role of this gene as a major contributor to LTA synthesis in L. plantarum. The mutant strains displayed strain-dependent anomalous cell morphologies that resulted in elongated or irregular cells with aberrant septum formation. They also exhibited higher sensitivity to several stresses (osmotic and heat) and to antimicrobials that target the cell wall. The toxicity of inorganic [(Hg(II)] and organic mercury (methyl-Hg) was also increased upon ltaS mutation in a strain-dependent manner. However, the mutant strains showed 0 to 50% decrease in their capacity of Hg binding compared to their corresponding parental strains. This result suggests a partial contribution of LTA to Hg binding onto the cell surface that was dependent on the strain and the Hg form.


Assuntos
Parede Celular/química , Farmacorresistência Bacteriana/genética , Lactobacillus plantarum/metabolismo , Lipopolissacarídeos/metabolismo , Compostos de Mercúrio/química , Compostos de Mercúrio/toxicidade , Ácidos Teicoicos/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/genética , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Probióticos/metabolismo , Estresse Fisiológico/fisiologia , Ácidos Teicoicos/biossíntese
7.
Nat Struct Mol Biol ; 27(6): 561-569, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367070

RESUMO

Lipoteichoic acids (LTAs) are essential cell-wall components in Gram-positive bacteria, including the human pathogen Staphylococcus aureus, contributing to cell adhesion, cell division and antibiotic resistance. Genetic evidence has suggested that LtaA is the flippase that mediates the translocation of the lipid-linked disaccharide that anchors LTA to the cell membrane, a rate-limiting step in S. aureus LTA biogenesis. Here, we present the structure of LtaA, describe its flipping mechanism and show its functional relevance for S. aureus fitness. We demonstrate that LtaA is a proton-coupled antiporter flippase that contributes to S. aureus survival under physiological acidic conditions. Our results provide foundations for the development of new strategies to counteract S. aureus infections.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Diglicerídeos/química , Lipopolissacarídeos/biossíntese , Staphylococcus aureus/fisiologia , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Dissacarídeos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Mutação , Conformação Proteica , Prótons , Staphylococcus aureus/genética , Estresse Fisiológico
8.
Molecules ; 25(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408616

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) have been deemed as serious threats by the CDC. Many chronic MRSA and VRE infections are due to biofilm formation. Biofilm are considered to be between 10-10,000 times more resistant to antibiotics, and therefore new chemical entities that inhibit and/or eradicate biofilm formation are needed. Teichoic acids, such as lipoteichoic acids (LTAs) and wall teichoic acids (WTAs), play pivotal roles in Gram-positive bacteria's ability to grow, replicate, and form biofilms, making the inhibition of these teichoic acids a promising approach to fight infections by biofilm forming bacteria. Here, we describe the potent biofilm inhibition activity against MRSA and VRE biofilms by two LTA biosynthesis inhibitors HSGN-94 and HSGN-189 with MBICs as low as 0.0625 µg/mL against MRSA biofilms and 0.5 µg/mL against VRE biofilms. Additionally, both HSGN-94 and HSGN-189 were shown to potently synergize with the WTA inhibitor Tunicamycin in inhibiting MRSA and VRE biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Enterococcus faecalis/fisiologia , Lipopolissacarídeos/biossíntese , Staphylococcus aureus Resistente à Meticilina/fisiologia , Ácidos Teicoicos/biossíntese , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento
9.
J Biol Chem ; 295(12): 4024-4034, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047114

RESUMO

The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers linked to either peptidoglycan (wall teichoic acids; WTA) or to membrane glycolipids (lipoteichoic acids; LTA). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers yet are synthesized through different pathways and have distinct but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exolytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, which lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not degrade unsubstituted LTA unless it was partially precleaved, allowing access of GlpQ to the other end of the polymer, which, in the intact molecule, is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have been suggested previously on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers: WTA is made of sn-glycerol-3-phosphate, and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTA and replaces it with phosphate-free teichuronic acids.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ácidos Teicoicos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Glicosilação , Lipopolissacarídeos/biossíntese , Diester Fosfórico Hidrolases/genética , Polímeros/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Compostos de Sódio/química , Estereoisomerismo , Especificidade por Substrato , Ácidos Teicoicos/biossíntese
10.
PLoS Pathog ; 15(9): e1008044, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518377

RESUMO

ß-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of ß-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of ß-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with ß-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by ß-lactams or by inhibiting an early step in WTA biosynthesis. The finding that ß-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that ß-lactams do not kill S. aureus simply by weakening the cell wall.


Assuntos
Proteínas de Bactérias/fisiologia , Endopeptidase Clp/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Bacteriólise/fisiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endopeptidase Clp/genética , Humanos , Modelos Biológicos , Mutação , Oxacilina/farmacologia , Staphylococcus aureus/genética , Ácidos Teicoicos/biossíntese , Tunicamicina/farmacologia , beta-Lactamas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31307991

RESUMO

Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as ß-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the ß-lactams.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Resistência a Meticilina/genética , Staphylococcus aureus/efeitos dos fármacos , Resistência a Vancomicina/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Humanos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Óperon/efeitos dos fármacos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Vancomicina/farmacologia , beta-Lactamas/farmacologia
12.
PLoS One ; 14(5): e0217517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31145754

RESUMO

Staphylococcus aureus formed bacterial aggregates in the plasma fraction of the hemolymph of silkworm, the larva of Bombyx mori, in a growth-dependent manner. The addition of arabinose or galactose inhibited the formation of S. aureus aggregates in the silkworm plasma. Formation of the bacterial aggregates depended on S. aureus genes required for the synthesis of bacterial surface polysaccharides-ypfP and ltaA, which are involved in lipoteichoic acid synthesis, and the tagO gene, which is involved in wall teichoic acid synthesis. These findings suggest that S. aureus forms bacterial aggregates in the silkworm plasma via bacterial surface teichoic acids.


Assuntos
Bombyx/genética , Agregação Celular/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Arabinose/farmacologia , Bombyx/metabolismo , Bombyx/microbiologia , Agregação Celular/genética , Galactose/farmacologia , Glicosiltransferases/genética , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Ácidos Teicoicos/biossíntese
13.
Elife ; 82019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30964003

RESUMO

Penicillin and related antibiotics disrupt cell wall synthesis to induce bacteriolysis. Lysis in response to these drugs requires the activity of cell wall hydrolases called autolysins, but how penicillins misactivate these deadly enzymes has long remained unclear. Here, we show that alterations in surface polymers called teichoic acids (TAs) play a key role in penicillin-induced lysis of the Gram-positive pathogen Streptococcus pneumoniae (Sp). We find that during exponential growth, Sp cells primarily produce lipid-anchored TAs called lipoteichoic acids (LTAs) that bind and sequester the major autolysin LytA. However, penicillin-treatment or prolonged stationary phase growth triggers the degradation of a key LTA synthase, causing a switch to the production of wall-anchored TAs (WTAs). This change allows LytA to associate with and degrade its cell wall substrate, thus promoting osmotic lysis. Similar changes in surface polymer assembly may underlie the mechanism of antibiotic- and/or growth phase-induced lysis for other important Gram-positive pathogens.


Assuntos
Antibacterianos/farmacologia , Bacteriólise/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Penicilinas/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Ácidos Teicoicos/biossíntese
14.
ChemMedChem ; 14(10): 1000-1004, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30939229

RESUMO

The rise of antibiotic resistance, especially in Staphylococcus aureus, and the increasing death rate due to multiresistant bacteria have been well documented. The need for new chemical entities and/or the identification of novel targets for antibacterial drug development is high. Lipoteichoic acid (LTA), a membrane-attached anionic polymer, is important for the growth and virulence of many Gram-positive bacteria, and interest has been high in the discovery of LTA biosynthesis inhibitors. Thus far, only a handful of LTA biosynthesis inhibitors have been described with moderate (MIC=5.34 µg mL-1 ) to low (MIC=1024 µg mL-1 ) activities against S. aureus. Herein we describe the identification of novel compounds that potently inhibit LTA biosynthesis in S. aureus, displaying impressive antibacterial activities (MIC as low as 0.25 µg mL-1 ) against methicillin-resistant S. aureus (MRSA). Under similar in vitro assay conditions, these compounds are 4-fold more potent than vancomycin and 8-fold more potent than linezolid against MRSA.


Assuntos
Antibacterianos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ácidos Teicoicos/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Ácidos Teicoicos/biossíntese
15.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010815

RESUMO

Using an affinity column retention assay, we showed that the purified Tet38 membrane transporter of Staphylococcus aureus bound specifically to host cell CD36 and to the complex CD36-Toll-like receptor 2 (TLR-2), but not to TLR-2 alone or TLR-2 and S. aureus lipoteichoic acid (LTA). We tested the effect of LTA on the internalization of S. aureustet38 mutant QT7 versus RN6390 by A549 epithelial cells. Addition of anti-LTA antibody to the bacteria prior to adding to A549 cells reduced internalization of QT7 2-fold compared to that with nonspecific antibody treatment. QT7 internalized 4- to 6-fold less than RN6390 with or without anti-LTA antibody. These data suggested that Tet38 and LTA were independently involved in the invasion process. The wall teichoic acid (WTA) inhibitor tunicamycin had an 8-fold decrease in activity with overexpression of tet38 and a 2-fold increase in activity in QT7 (tet38). Reserpine (an inhibitor of efflux pumps) reduced the effect of tet38 overexpression on tunicamycin resistance 4-fold. In addition, tet38 affected growth in the presence of LTA inhibitor Congo red, with overexpression increasing growth and deletion of tet38 reducing growth. In conclusion, Tet38 contributes to S. aureus invasion of A549 via direct binding to CD36 of the complex CD36-TLR-2, and LTA independently bound to TLR-2. The reduction of tunicamycin resistance in the presence of reserpine and the survival ability of the tet38 overexpressor in the presence of Congo red suggest that Tet38 can also protect the synthesis of LTA and WTA in S. aureus against their inhibitors, possibly functioning as an efflux pump.


Assuntos
Proteínas de Bactérias/metabolismo , Antígenos CD36/metabolismo , Vermelho Congo/farmacologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Receptor 2 Toll-Like/metabolismo , Tunicamicina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Antígenos CD36/genética , Humanos , Lipopolissacarídeos/metabolismo , Ligação Proteica , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Ácidos Teicoicos/metabolismo , Receptor 2 Toll-Like/genética
16.
Sci Rep ; 9(1): 3212, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824758

RESUMO

Wall teichoic acid (WTA) are major constituents of Staphylococcus aureus (S. aureus) cell envelopes with important roles in the bacteria's physiology, resistance to antimicrobial molecules, host interaction, virulence and biofilm formation. They consist of ribitol phosphate repeat units in which the ribitol residue is substituted with D-alanine (D-Ala) and N-acetyl-D-glucosamine (GlcNAc). The complete S. aureus WTA biosynthesis pathways was recently revealed with the identification of the two glycosyltransferases, TarM and TarS, respectively responsible for the α- and ß-GlcNAc anomeric substitutions. We performed structural analyses to characterize WTAs from a panel of 24 S. aureus strains responsible for invasive infections. A majority of the S. aureus strains produced the ß-GlcNAc WTA form in accordance with the presence of the tarS gene in all strains assessed. The ß-GlcNAc anomer was preferentially expressed at the expense of the α-GlcNAc anomer when grown on stress-inducing culture medium containing high NaCl concentration. Furthermore, WTA glycosylation of the prototype S. aureus Newman strain was characterized in vivo in two different animal models, namely peritonitis and deep wound infection. While the inoculum used to infect animals produced almost exclusively α-GlcNAc WTA, a complete switch to ß-glycosylation was observed in infected kidneys, livers and muscles. Overall, our data demonstrate that S. aureus WTA glycosylation is strongly influenced by environmental conditions and suggest that ß-GlcNAc WTA may bring competitive advantage in vivo.


Assuntos
Parede Celular/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Acetilgalactosamina/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Parede Celular/genética , Meios de Cultura/farmacologia , Glicosilação/efeitos dos fármacos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Camundongos , Peritonite/metabolismo , Peritonite/microbiologia , Cloreto de Sódio/farmacologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/microbiologia
17.
J Biol Chem ; 293(46): 17985-17996, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30237166

RESUMO

Modifications to the Gram-positive bacterial cell wall play important roles in antibiotic resistance and pathogenesis, but the pathway for the d-alanylation of teichoic acids (DLT pathway), a ubiquitous modification, is poorly understood. The d-alanylation machinery includes two membrane proteins of unclear function, DltB and DltD, which are somehow involved in transfer of d-alanine from a carrier protein inside the cell to teichoic acids on the cell surface. Here, we probed the role of DltD in the human pathogen Staphylococcus aureus using both cell-based and biochemical assays. We first exploited a known synthetic lethal interaction to establish the essentiality of each gene in the DLT pathway for d-alanylation of lipoteichoic acid (LTA) and confirmed this by directly detecting radiolabeled d-Ala-LTA both in cells and in vesicles prepared from mutant strains of S. aureus We developed a partial reconstitution of the pathway by using cell-derived vesicles containing DltB, but no other components of the d-alanylation pathway, and showed that d-alanylation of previously formed lipoteichoic acid in the DltB vesicles requires the presence of purified and reconstituted DltA, DltC, and DltD, but not of the LTA synthase LtaS. Finally, based on the activity of DltD mutants in cells and in our reconstituted system, we determined that Ser-70 and His-361 are essential for d-alanylation activity, and we propose that DltD uses a catalytic dyad to transfer d-alanine to LTA. In summary, we have developed a suite of assays for investigating the bacterial DLT pathway and uncovered a role for DltD in LTA d-alanylation.


Assuntos
Alanina/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Ácidos Teicoicos/metabolismo , Tioléster Hidrolases/metabolismo , Alanina/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ensaios Enzimáticos , Histidina/química , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Serina/química , Staphylococcus aureus/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
18.
ACS Chem Biol ; 13(8): 2010-2015, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30010316

RESUMO

A method for labeling teichoic acids in the human pathogen Streptococcus pneumoniae has been developed using a one-pot two-step metabolic labeling approach. The essential nutriment choline modified with an azido-group was incorporated and exposed at the cell surface more rapidly than it reacted with the strain promoted azide alkyne cycloaddition (SPAAC) partner also present in the medium. Once at the cell surface on teichoic acids, coupling of the azido group could then occur within 5 min by the bio-orthogonal click reaction with a DIBO-linked fluorophore. This fast and easy method allowed pulse-chase experiments and was combined with another fluorescent labeling approach to compare the insertion of teichoic acids with peptidoglycan synthesis with unprecedented temporal resolution. It has revealed that teichoic acid and peptidoglycan processes are largely concomitant, but teichoic acid insertion persists later at the division site.


Assuntos
Parede Celular/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Peptidoglicano/química , Ácidos Teicoicos/química , Alcinos/química , Alcinos/metabolismo , Azidas/química , Azidas/metabolismo , Colina/análogos & derivados , Colina/química , Colina/metabolismo , Química Click , Reação de Cicloadição , Ciclo-Octanos/química , Sondas Moleculares/metabolismo , Peptidoglicano/biossíntese , Streptococcus pneumoniae/química , Ácidos Teicoicos/biossíntese
19.
Curr Opin Struct Biol ; 53: 45-58, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29885610

RESUMO

The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.


Assuntos
Proteínas de Bactérias , Parede Celular/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptidoglicano , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana/química , Monossacarídeos/biossíntese , Oligopeptídeos/biossíntese , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Estrutura Quaternária de Proteína , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese
20.
Elife ; 72018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757141

RESUMO

Surface proteins of Staphylococcus aureus are secreted across septal membranes for assembly into the bacterial cross-wall. This localized secretion requires the YSIRK/GXXS motif signal peptide, however the mechanisms supporting precursor trafficking are not known. We show here that the signal peptide of staphylococcal protein A (SpA) is cleaved at the YSIRK/GXXS motif. A SpA signal peptide mutant defective for YSIRK/GXXS cleavage is also impaired for septal secretion and co-purifies with SecA, SecDF and LtaS. SecA depletion blocks precursor targeting to septal membranes, whereas deletion of secDF diminishes SpA secretion into the cross-wall. Depletion of LtaS blocks lipoteichoic acid synthesis and abolishes SpA precursor trafficking to septal membranes. We propose a model whereby SecA directs SpA precursors to lipoteichoic acid-rich septal membranes for YSIRK/GXXS motif cleavage and secretion into the cross-wall.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/biossíntese , Canais de Translocação SEC/metabolismo , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Parede Celular/metabolismo , Transporte Proteico , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...