Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.757
Filtrar
1.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003087

RESUMO

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Assuntos
Coloides , Retardadores de Chama , Água Subterrânea , Éteres Difenil Halogenados , Poluentes do Solo , Solo , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Coloides/química , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Poluentes Químicos da Água/análise , China , Retardadores de Chama/análise , Monitoramento Ambiental , Modelos Químicos
2.
Environ Monit Assess ; 196(9): 779, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096402

RESUMO

The present study focused on the distribution of uranium in groundwater samples collected from various sources in the Chikkaballapur district and its associated risk in humans. Seventy-five groundwater samples were collected during pre-monsoon and post-monsoon seasons and were analysed for uranium concentration along with different water quality parameters. The uranium concentration ranged from 0.23 to 285.23 µg/L in the pre-monsoon season and from 0.02 to 107.87 µg/L in the post-monsoon season. More than 90% of samples, except a few, were under the safe limits of 60 µg/L as directed by the Department of Atomic Energy (DAE) of India's Atomic Energy Regulatory Board (AERB). The study analysed physicochemical parameters like pH, total dissolved solids (TDS), nitrate, total hardness, phosphate, sulphate and fluoride in collected water samples. Out of all samples, few samples noted higher values of TDS, nitrate and fluoride. Their correlation along with uranium is detailed in the study. Owing to its slightly elevated content, an evaluation of the radiological and chemical hazards associated with uranium consumption was analysed. When the risk resulting from chemical toxicity was evaluated, relatively few samples had a hazard quotient (HQ) score higher than 1, which suggested that the people were vulnerable to chemical danger. This study also evaluates the dangers of elevated uranium levels in groundwater samples to the general public's health. It also acknowledges the importance of routinely evaluating and treating the drinking water sources in the region.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Urânio/análise , Índia , Água Subterrânea/química , Medição de Risco , Poluentes Radioativos da Água/análise , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Monitoramento de Radiação
3.
Water Environ Res ; 96(8): e11078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087861

RESUMO

Petroleum hydrocarbons (PHCs) can be biodegraded into CO2, and PHC-contaminated aquifers are always deemed as carbon sources. Fortunately, some carbon fixation microorganisms have been found in PHC-contaminated sites. However, most of the studies are related to volatile short-chain PHC, and few studies focus on long-chain PHC-contaminated sites. To reveal the carbon fixation microorganisms in these sites, in the study, a long-chain PHC polluted site in North China was selected. Through hydrochemical and metagenomics analysis, the structure and capacity of carbon fixing microorganisms in the site were revealed. Results showed that there were many kinds of carbon fixed microorganisms that were identified such as Flavobacterium, Pseudomonas. HP/4HB, rTCA, and DC/4HB cycles were dominated carbon fixation pathways. The long-chain PHC were weakly correlated with carbon fixation microorganisms, but it may stimulate the growth of some carbon fixation microorganisms, such as microorganisms involved in rTCA cycle. PRACTITIONER POINTS: The microorganisms with carbon fixation gene exist in the aquifer contaminated by long-chain petroleum hydrocarbon. Microorganisms that have the ability to degrade petroleum also have the ability to carbon fixation. Long-chain petroleum hydrocarbon may promote the growth of carbon fixation microorganisms.


Assuntos
Ciclo do Carbono , Água Subterrânea , Hidrocarbonetos , Petróleo , Poluentes Químicos da Água , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , China
4.
Environ Geochem Health ; 46(9): 358, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088124

RESUMO

Groundwater is the main source of water for more than 2 billion people worldwide. In southern Brazil, the Crystalline Basement Aquifer System is composed of strategic groundwater reservoirs. Groundwater is mostly taken from shallow wells, and it is often used without any treatment, which poses a risk to public health. The present study aims to evaluate shallow groundwater quality and the geochemistry of shallow and deep groundwater located in the municipality of Canguçu, southern Brazil. The physicochemical and microbiological parameters of groundwater samples collected from shallow wells were monitored and analyzed using ANOVA variance analysis and water quality index (CCME WQI) approaches. Also, the results were compared with secondary data from deep wells. The monitored shallow wells had thermotolerant coliforms, Escherichia coli, pH, potassium, manganese, iron, and nitrate in disagreement with the guidelines of the World Health Organization. Moreover, variance analysis showed that the parameters temperature, dissolved oxygen, pH, chloride, and magnesium were the most influenced by seasonal variations. According to the CCME WQI, most samples had good quality (60%), 28% had fair quality, and 12% had poor quality. In addition, the field campaigns with higher precipitation rates also presented fair quality. Therefore, most of the shallow groundwater quality is affected by surface pollutants from the urban area, aggravated in rainy periods. Whereas deep groundwater is influenced by geochemistry mechanisms. The results revealed the risk of water consumption for public health and the urgent need for better maintenance of these wells and water treatment implementation.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Qualidade da Água , Água Subterrânea/química , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Microbiologia da Água , Estações do Ano , Poços de Água , Nitratos/análise
5.
Water Sci Technol ; 90(3): 1033-1046, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141050

RESUMO

The water-rock interactions significantly affect the dissolution and release of dissolved organic matter (DOM) during the reinjection of mine water into the underground reservoir. In this study, the surface characteristics and chemical composition of the natural medium from the open-pit coal mine were characterized. The waste consists mainly of quartz-dominated sandstone (43.64%) and mudstone dominated by sanidine (76.36%). During the 35-day experiment, two protein-like, one humus-like, and one fulvic acid-like substances were identified by PARAFAC. It was observed that the type of aqueous medium significantly affected the variational trend of DOM. Compared to the artificial medium, the fluorescence intensity of waste materials in the waste dump increased significantly during the reinjection process. Therefore, a positive correlation was observed between the fraction of mudstone in the aqueous medium and the DOM composition, mainly due to the dissolution of polycyclic aromatic hydrocarbon substances from the mudstone. The results revealed that the natural water storage medium had a certain water storage feasibility when compared with the expensive artificial medium. However, the fraction of mudstone in the water storage medium should be controlled to minimize the release of organic matter into the environment.


Assuntos
Compostos Orgânicos , Compostos Orgânicos/análise , Mineração , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Água Subterrânea/química
6.
PLoS One ; 19(8): e0304015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133719

RESUMO

Government intervention has become an important measure to restrain groundwater overexploitation. This paper analyzes the effect of three types of government intervention measures, namely, guidance, incentive and constraint, on farmers' groundwater utilization behavior, from the perspective of scale-heterogeneity, using general quantile regression model, by survey data of 1122 households in well irrigation area of north China. The results showed that: (1) the incentive and guiding measures have negative effects on farmers' groundwater usage, while the effect of restrictive measures is not obvious. The guided policy is superior to the incentive measure as to governance effect. (2) With the increase of farmers' land scale, the influence of incentive measures shows a trend of weakening, and the effect of guided measures on groundwater demand reduction of farmers is stronger. When it comes to the different point of water consumption, when at the point level of 0.25, the incentive measures have the most obvious inhibitory effect. With the increase of water consumption of farmers, the guided measures begin to play a core role. The effect of restrictive measures is not obvious with the increase of water consumption. (3) In addition, farmers' irrigation water consumption also is affected by gender, cognition of water resources shortage, ecological cognitive level, acquisition ability of disaster information, village rain conditions, the degree of water rights market development, feelings of water fee increase, irrigated disputes in the village, collective economic level of village. The selection of policy tools is flexible according to the farmers' land scale for groundwater over-extraction control.


Assuntos
Fazendeiros , Água Subterrânea , Fazendeiros/psicologia , Humanos , China , Conservação dos Recursos Hídricos/métodos , Abastecimento de Água , Feminino , Masculino , Governo , Irrigação Agrícola/economia , Agricultura/economia , Agricultura/métodos
7.
Sci Rep ; 14(1): 18126, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103408

RESUMO

Groundwater aquifers are ecological hotspots with diverse microbes essential for biogeochemical cycles. Their ecophysiology has seldom been studied on a basin scale. In particular, our knowledge of chemosynthesis in the deep aquifers where temperatures reach 60 °C, is limited. Here, we investigated the diversity, activity, and metabolic potential of microbial communities from nine wells reaching ancient groundwater beneath Israel's Negev Desert, spanning two significant, deep (up to 1.5 km) aquifers, the Judea Group carbonate and Kurnub Group Nubian sandstone that contain fresh to brackish, hypoxic to anoxic water. We estimated chemosynthetic productivity rates ranging from 0.55 ± 0.06 to 0.82 ± 0.07 µg C L-1 d-1 (mean ± SD), suggesting that aquifer productivity may be underestimated. We showed that 60% of MAGs harbored genes for autotrophic pathways, mainly the Calvin-Benson-Bassham cycle and the Wood-Ljungdahl pathway, indicating a substantial chemosynthetic capacity within these microbial communities. We emphasize the potential metabolic versatility in the deep subsurface, enabling efficient carbon and energy use. This study set a precedent for global aquifer exploration, like the Nubian Sandstone Aquifer System in the Arabian and Western Deserts, and reconsiders their role as carbon sinks.


Assuntos
Água Subterrânea , Água Subterrânea/microbiologia , Israel , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Adaptação Fisiológica , Microbiologia da Água , Microbiota
8.
Nat Commun ; 15(1): 6788, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117653

RESUMO

Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.


Assuntos
Bactérias , Água Subterrânea , Metagenômica , Viroma , Vírus , Água Subterrânea/microbiologia , Água Subterrânea/virologia , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Viroma/genética , Bactérias/genética , Bactérias/virologia , Bactérias/metabolismo , Bactérias/classificação , China , Archaea/virologia , Archaea/genética , Archaea/metabolismo , Filogenia , Microbiologia da Água , Metagenoma , Genoma Viral/genética
9.
J Environ Manage ; 367: 122033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096724

RESUMO

Landfill is an important means of municipal solid waste treatment. Previous studies have shown that the combination of "cut-off wall and pumping well" technology is an effective measure to deal with the leachate emission reduction and pollution control of landfill, and has been widely used in plain areas. However, for landfills in hilly areas with complex terrain and geological conditions, there is still a lack of clear and referable ideas and operational strategies for leachate emission reduction and pollution control. In this study, we proposed strategies for determining the position and depth of cut-off walls and pumping wells and reasonable combinations of the cut-off wall depth and pumping quantity for leachate reduction and pollution prevention of landfills in hilly areas. The determination of leachate reduction and pollution control strategy need to be achieved in two stages, qualitative and quantitative: (1) In the qualitative stage, the natural conditions (Weathering degree, groundwater flow characteristics, topography condition, hydrometeor condition, and aquifer thickness) and engineering conditions (Operation status, landfill location, and excavation status) of the study area are analysed in detail, and then the depth range and location of the cut-off wall and pumping well are determined. (2) In the quantitative stage, we need to quantify the combination of the cut-off wall depth and pumping quantity by using profile particle tracing and pollutant transport modelling. A reasonable cut-off wall depth needs to control the leakage of pollutants inside the wall, and a reasonable pumping quantity needs to ensure that the depth of the pollutant distribution is equivalent to the depth of the separation line, which separates the water flow towards the pumping well and the water flow downstream. (3) The effectiveness of the leachate reduction and prevention strategies proposed in this study was verified through an example of a landfill in Northeast China. This study provides a reference and operation method for leachate emission reduction and pollution control of landfills in hilly areas.


Assuntos
Água Subterrânea , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos/métodos , Monitoramento Ambiental
10.
J Environ Manage ; 367: 121885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098072

RESUMO

A substantial reservoir of nitrogen (N) in soil poses a threat to the quality and safety of shallow groundwater, especially under extreme precipitation that hastens nitrogen leaching into groundwater. However, the specific impact of varying precipitation intensities on the concentration and sources of nitrate (NO3-) in groundwater across diverse hydrogeological zones and land uses remains unclear. This study aims to elucidate the fluctuations in NO3- concentration, sources, and controlling factors in shallow groundwater under different intensities of precipitation (extreme heavy precipitation and continuous heavy precipitation) in a typical alluvial-pluvial fan of the North China Plain by using stable isotopes (δ2H-H2O, δ18O-H2O, δ15N-NO3-, δ18O-NO3-), hydrochemical analyses and the SIAR model. Affected by extreme heavy precipitation the depleted isotopes of δ2H-H2O and δ18O-H2O in groundwater of the entire area suggested the rapid recharge of fast flow by precipitation. The enriched isotopes of δ2H-H2O and δ18O-H2O of north part in alluvial fan after continuous heavy precipitation showed the recharge of translatory flow of soil water. NO3-concentrations increased to 78.9 mg/L after extreme heavy precipitation and increased to 105.3 mg/L after continuous heavy precipitation when compared to those in normal year (56.8 mg/L) of north part of the alluvial fan. However, NO3- concentrations had slight variation after continuous heavy precipitation of south part of the fan due to the deep vadose zone. The contribution ratio of sources of NO3- in groundwater by using SIAR analysis revealed manure & sewage (MS) as the primary NO3- source (accounting for 59.7-78.1%) before extreme heavy precipitation, chemical fertilizer (CF) making a minor contribution (6.9-17.3%). Different precipitation events and land use types lead to changes in NO3- sources. Affected by extreme heavy precipitation, the contribution of MS decreased while CF increased, particularly in vegetables (26.2-28.1%) and farmland (29.2-34.7%). After continuous heavy precipitation, MS increased again, particularly in vegetables (50.0%) and farmlands (20.4-66.4%), with CF either increasing or remaining steady. This indicated that continuous heavy precipitation accelerated the leaching of nitrogen (organic manure application) stored in deep soil to groundwater and it has a larger influence on the increasing of NO3- concentrations of groundwater than extreme heavy precipitation which carried nitrogen (chemical fertilizer application) in shallow soil to groundwater by fast flow. These findings underscore the importance of considering soil chemical N stores and their implications for groundwater contamination mitigation under future extreme climate scenarios, particularly in agricultural management practices.


Assuntos
Água Subterrânea , Nitratos , Água Subterrânea/química , Nitratos/análise , Solo/química , Nitrogênio/análise , Chuva , China , Monitoramento Ambiental , Poluentes Químicos da Água/análise
11.
Water Res ; 262: 122141, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089121

RESUMO

Balancing the water consumption of agricultural and ecological is the key point of sustainable social and economic development in an inland river basin. The growth of desert riparian forests in inland river basins mainly depends on a certain phreatic water table depth (PWTD). The main object of this study was to allocate and schedule water resources to regulate the PWTD and satisfy agricultural water demand. Therefore, a multi-objective double layer optimal allocation and scheduling framework based on the computationally efficient integrated surface water-groundwater model (ISGWM), which can simulate the surface water processes, groundwater recharge and discharge processes, and PWTD changes, was constructed and applied to the mainstream of Tarim River Basin (TRB). The top layer model of the framework is an optimal ecological water allocation model, and its optimal allocation results are used as the initial solution of the bottom layer model. The results show that under 5 different inflow frequencies, the agricultural water shortage rate is 0, 17.38 %, 17.41 %, 14.06 %, and 19.94 %, respectively. The PWTD regulation has a great performance. After the optimal scheduling, the proportions of good growth of the control area behind the gate under different inflow frequencies were 98.18 %, 98.18 %, 98.18 %, 90.91 %, and 94.55 %. Agricultural water shortage is mainly due to the non-uniformity distribution of intra-annual inflow and the lack of controlling hydraulic engineering. The regulation of PWTD can guarantee the growth of desert riparian forests on both sides of the mainstream of TRB. Besides, we explored the feasibility of exploiting groundwater to supplement agricultural water consumption. The groundwater exploitation should be controlled within the scope of not causing excessive increase of PWTD (difference between PWTD and target depth <1 m), due to the groundwater exploitation to supplement agricultural water will lead to the increase of PWTD. Overall, this framework, which regulates the PWTD with the change of ecological water supply based on the ISGWM, provides a new idea for the allocation and scheduling of agricultural and ecological water resources in arid inland river basins. It also provides a new method for the coupled cooperative operation of surface water and groundwater.


Assuntos
Água Subterrânea , Modelos Teóricos , Rios , Abastecimento de Água , Agricultura
12.
Water Environ Res ; 96(8): e11105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39148173

RESUMO

Few studies apply geochemical concepts governing fluoride fate and transport in natural waters to geochemical conditions at contaminated industrial sites. This has negative implications for designing sampling and compliance monitoring programs and informing remediation decision-making. We compiled geochemical data for 566 groundwater samples from industrial waste streams associated with elevated fluoride and that span a range of geochemical conditions, including alkaline spent potliner, near-neutral pH coal combustion, and acidic gypsum stack impoundments. Like natural systems, elevated fluoride (hundreds to thousands of ppm) exists at the pH extremes and is generally tens of ppm at near-neutral pH conditions. Geochemical models identify pH-dependent fluoride complexation at low pH and carbonate stability at high pH as dominant processes controlling fluoride mobility. Limitations in available thermochemical, kinetic rate, and adsorption/desorption data and lack of complete analyses present uncertainties in quantitative models used to assess fluoride mobility at industrial sites. PRACTITIONER POINTS: Geochemical fundamentals of fluoride fate and transport in groundwater are communicated for environmental practitioners. Fluoride is a reactive constituent in groundwater, and factors that govern attenuation are identified. Geochemical models are useful for identifying fluoride attenuation processes, but quantitative use is limited by thermodynamic data uncertainties.


Assuntos
Fluoretos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Fluoretos/química , Fluoretos/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio
13.
PLoS One ; 19(8): e0307025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141621

RESUMO

This study seeks to assess the hydrogeochemical characteristics of groundwater in the southern part of Thal Desert of Pakistan. The primary focus lies in identifying potential sources of contamination and evaluating their impact on groundwater and the ecosystem. Groundwater samples were collected from diverse sources including shallow hand pumps, tubewells, and dug wells, with depths ranging from 11 to 28 m. A comprehensive analysis was performed to scrutinize the physical, chemical, and microbial attributes of the samples. Utilizing visual aids like the Piper, Durov, and Gibbs diagrams, as well as Pearson correlation, scatter plots, Schoeller diagrams, and pie charts, the study evaluated the groundwater quality and its suitability for consumption. Results indicate that mineral infiltration from rainfall, domestic waste, and industrial effluents significantly affects groundwater quality, leading to widespread salinity. Weathering processes and ion exchange were identified as key factors contributing to elevate levels of bicarbonates, sodium, magnesium, and chloride ions. Employing the Water Quality Index (WQI) on 40 groundwater samples, findings reveal that 52.5% of samples demonstrated poor to not suitable quality, with 27.5% categorized as poor, 2.5% as very poor, and 22.5% not suitable consumption. Conversely, 47.5% of samples showcased good to excellent quality, with 25% rated as good and 22.5% as excellent. These findings provide valuable insights for hydrogeologists to develop appropriate strategies for water treatment and address any concerns related to groundwater quality.


Assuntos
Clima Desértico , Água Subterrânea , Qualidade da Água , Água Subterrânea/análise , Água Subterrânea/química , Paquistão , Monitoramento Ambiental/métodos , Salinidade , Poluentes Químicos da Água/análise
14.
Water Environ Res ; 96(8): e11087, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091038

RESUMO

Due to rapid urbanization and industrial growth, groundwater globally is continuously deteriorating, posing significant health risks to humans. This study employed a comprehensive methodology to analyze groundwater in the Western Banat Plain (Serbia). Using Piper and Gibbs plots, hydrogeochemistry was assessed, while the entropy-weighted water quality index (EWQI) was used to evaluate groundwater quality. Pollution sources were identified using positive matrix factorization (PMF) accompanied by Pearson correlation and hierarchical cluster analysis, while Monte Carlo simulation assessed health risks associated with groundwater consumption. Results showed that groundwater, mainly Ca-Mg-HCO3 type, is mostly suitable for drinking. Geogenic pollution, agricultural activities, and sewage were major pollution sources. Consumption of contaminated groundwater poses serious non-carcinogenic and carcinogenic health risks. Additionally, arsenic from geogenic source was found to be the main health risks contributor, considering its worryingly elevated concentration, ranging up to 364 µg/L. These findings will be valuable for decision-makers and researchers in managing groundwater vulnerability. PRACTITIONER POINTS: Groundwater is severely contaminated with As in the northern part of the study area. The predominant hydrochemical type of groundwater in the area is Ca-Mg-HCO3. The PMF method apportioned three groundwater pollution sources. Monte Carlo identified rock dissolution as the primary health risk contributor. Health risks and mortality in the study area are positively correlated.


Assuntos
Arsênio , Água Subterrânea , Método de Monte Carlo , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Arsênio/análise , Medição de Risco , Monitoramento Ambiental , Humanos
15.
Water Environ Res ; 96(8): e11088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091045

RESUMO

The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO3-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F-. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO3 - and may also be released from compacted soils because of groundwater extraction. Enriched F- in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F- cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.


Assuntos
Água Subterrânea , Água Subterrânea/química , China , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Qualidade da Água , Sedimentos Geológicos/química
16.
Environ Geochem Health ; 46(9): 359, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093343

RESUMO

This study investigates the radon concentration in groundwater in Kupwara, the northernmost district of the Kashmir valley. It further assesses the annual effective dose experienced by the district's diverse population-infants, children, and adults-attributable to both inhalation of airborne radon released from drinking water and direct ingestion. In addition to this, the calculation of gamma dose rate is also carried out at each of the sampling site of radon. A portable radon-thoron monitor and a portable gamma radiation detector were respectively employed to estimate the activity concentration of radon in water samples and to measure the gamma dose rate. The radon concentration was found to exhibit variability from a minimum of 2.9 BqL-1 to a maximum of 197.2 BqL-1, with a mean of 26.3 BqL-1 and a standard deviation of 23.3 BqL-1. From a total of 85 samples, 10.6% of the samples had radon activity concentrations exceeding the permissible limits of 40 BqL-1 set by the United Nations Scientific Committee on Effects of Atomic Radiations as reported by UNSCEAR (Sources and effects of ionizing radiation, 2008) and only 1.2% of the samples have radon activity concentration exceeding the permissible limits of 100 BqL-1 set by the World Health Organization as reported by WHO (WHO guidelines for drinking-water quality, World Health Organization, Geneva, 2008). The mean of the annual effective dose due to inhalation for all age groups as well as the annual ingestion dose for infants and children, surpasses the World Health Organization's limit of 100 µSv y-1 as reported by WHO (WHO guidelines for drinking-water quality, World Health Organization, Geneva, 2008). The observed gamma radiation dose rate in the vicinity of groundwater radon sites ranged from a minimum of 138 nSv h-1 to a maximum of 250 nSv h-1. The data indicated no significant correlation between the dose rate of gamma radiation and the radon levels in the groundwater. Radon concentration of potable water in the study area presents a non-negligible exposure pathway for residents. Therefore, the judicious application of established radon mitigation techniques is pivotal to minimize public health vulnerabilities.


Assuntos
Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Radônio/análise , Água Subterrânea/química , Índia , Poluentes Radioativos da Água/análise , Humanos , Água Potável/química , Água Potável/análise , Lactente , Criança , Doses de Radiação , Raios gama , Exposição à Radiação/análise , Adulto
17.
Environ Monit Assess ; 196(9): 796, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112830

RESUMO

Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498 µm in soils, mainly from 29 to 3394 µm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Microplásticos , Poluentes do Solo , Solo , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Poluentes do Solo/análise , Solo/química , Rios/química , China
18.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109421

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Escherichia coli Shiga Toxigênica , Microbiologia da Água , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Sensibilidade e Especificidade , Rios/microbiologia , Toxina Shiga I/genética , Água Subterrânea/microbiologia
19.
Sci Rep ; 14(1): 17805, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090209

RESUMO

The current research study evaluated the health and environmental risks issues associated with potentially toxic elements (PTEs) in the complex terminal aquifer located in the Algerian desert. The methods used included principal component and cluster (dendrogram) analysis to estimate source of ions and contamination. Various indices such as the Heavy Metal Pollution Index (HPI), Metal Index, hazard quotient, hazard index (HI), and cancer risk (CR) were applied to assess both environmental and human health risks. Furthermore, the Monte Carlo method was applied for probabilistic assessment of carcinogenic and non-carcinogenic risks through oral and dermal exposure routes in both adults and children. The results revealed that approximately 16% of the samples fell within the low pollution category (HPI < 100), indicating relatively lower levels of heavy metal contamination. However, the remaining 84% of the samples exhibited high pollution levels, indicating a significant presence of heavy metal pollutants in the northeastern part of the investigated area. The calculated average risk index (RI) for the collected samples was 18.99, with a range from 0.03 to 103.21. This indicates that a large portion, 82% of the samples, could cause low ecological risk (RI < 30), whereas the remaining 18% indicate a significant environmental pollution risk. The HI for oral ingestion showed that adults had HI values ranging from 0.231 to 1.54, while children exhibited higher values, ranging from 0.884 to 5.9 (Fig. 5a). For dermal exposure, HI values in adults ranged from 2.71E-07 to 8.74E-06 and in children, from 2.18E-06 to 7.03E-05. These findings highlight the potential non-carcinogenic risks associated with oral exposure to PTEs and underscore the increased vulnerability of children to metals such as Fe, Mn, Pb, and Cr. Most samples showed CR exceeding 1 × 10-4 for chromium (Cr) and lead (Pb), indicating a significant vulnerability to carcinogenic effects in both children and adults.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Argélia , Medição de Risco/métodos , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental/métodos , Criança , Adulto , Método de Monte Carlo , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Água Subterrânea/química , Água Subterrânea/análise
20.
Environ Sci Pollut Res Int ; 31(33): 46023-46037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980486

RESUMO

Groundwater in northwestern parts of Bangladesh, mainly in the Chapainawabganj District, has been contaminated by arsenic. This research documents the geographical distribution of arsenic concentrations utilizing machine learning techniques. The study aims to enhance the accuracy of model predictions by precisely identifying occurrences of groundwater arsenic, enabling effective mitigation actions and yielding more beneficial results. The reductive dissolution of arsenic-rich iron oxides/hydroxides is identified as the primary mechanism responsible for the release of arsenic from sediment into groundwater. The study reveals that in the research region, alongside elevated arsenic concentrations, significant levels of sodium (Na), iron (Fe), manganese (Mn), and calcium (Ca) were present. Statistical analysis was employed for feature selection, identifying pH, electrical conductivity (EC), sulfate (SO4), nitrate (NO3), Fe, Mn, Na, K, Ca, Mg, bicarbonate (HCO3), phosphate (PO4), and As as features closely associated with arsenic mobilization. Subsequently, various machine learning models, including Naïve Bayes, Random Forest, Support Vector Machine, Decision Tree, and logistic regression, were employed. The models utilized normalized arsenic concentrations categorized as high concentration (HC) or low concentration (LC), along with physiochemical properties as features, to predict arsenic occurrences. Among all machine learning models, the logistic regression and support vector machine models demonstrated high performance based on accuracy and confusion matrix analysis. In this study, a spatial distribution prediction map was generated to identify arsenic-prone areas. The prediction map also displays that Baroghoria Union and Rajarampur region under Chapainawabganj municipality are high-risk areas and Maharajpur Union and Baliadanga Union are comparatively low-risk areas of the research area. This map will facilitate researchers and legislators in implementing mitigation strategies. Logistic regression (LR) and support vector machine (SVM) models will be utilized to monitor arsenic concentration values continuously.


Assuntos
Arsênio , Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Poluentes Químicos da Água , Água Subterrânea/química , Bangladesh , Arsênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...