Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.544
Filtrar
1.
Environ Monit Assess ; 196(7): 669, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935154

RESUMO

Soil fluoride is a critical determinant of soil fertility, human health and crop productivity. Soil fluoride can be increased by climatic conditions, irrigation water and anthropogenic activity, and it is important to control fluoride by understanding the complex relationships between atmospheric conditions and water systems. In this research, a detailed focus is on the hydrological and meteorological aspects of soil fluorides in semi-saturated and saturated soils to discuss the impact of irrigation, capillary rise and the combination of rainfall and anthropogenic activities such as fertilizer application on the soils in the dry spell and monsoon seasons of 2021 and 2022. A Sentinel-1 data can be used to estimate fluoride levels to the above soil conditions. In an effort to estimate fluoride levels in different hydro-meteorological scenarios, we have put forward a hypothesis that focuses on understanding the potential connections between hydro-meteorological factors (precipitation, groundwater levels, and temperature) and the levels of fluoride. The findings indicate that the extensive use of groundwater for irrigation leads to a rise in fluoride levels, posing a significant threat to crop health over time. Furthermore, the combined effects of irrigation and upheaval leaching on fluoride levels have shown strong statistical conformity (R2 > 0.85) with the relevant field-measured fluoride data for the year 2022. Importantly, areas affected by F upheaval are more sensitive to the sand and clay percentage in the soil because potential and dispersion behaviour enlarge the capillaries to decelerate the upward movement. A region-based discussion details the factors contributing to the increase of fluoride in soil helpful in taking remedial measures and mitigation plans.


Assuntos
Monitoramento Ambiental , Fluoretos , Micro-Ondas , Poluentes do Solo , Solo , Fluoretos/análise , Solo/química , Poluentes do Solo/análise , Tecnologia de Sensoriamento Remoto , Água Subterrânea/química
2.
J Water Health ; 22(6): 1088-1101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935459

RESUMO

Despite the negative effects that the use of pesticides (such as herbicides and insecticides) have on human health and water resources, a significant portion of the world's agricultural production depends on them. The purpose of this study was to determine selected residual concentrations of pesticides (diazinon, ethion, malathion, alachlor, methyl-parathion, trifluralin, atrazine, chlorpyrifos, and azinphos-methyl) in samples from Shiraz potable water sources. For this purpose, water treatment plant, groundwater wells, treated surface water, and a mixture of groundwater and treated surface water were taken. In addition, statistical and risk analyses (carcinogenic and non-carcinogenic) were used. According to the results, chlorpyrifos with 84.4% had the highest removal efficiency and methyl-parathion with 10% had the lowest removal rate in the Shiraz water treatment plant process. The highest mean concentration was related to azinphos-methyl (1.5 µg/L) and chlorpyrifos (0.59 µg/L) in the groundwater samples. All measured compounds in water source samples were below standard levels, except for chlorpyrifos and azinphos-methyl, which were reported in groundwater above the limit recommended by the Environmental Protection Agency (EPA). The results showed that while the selected pesticides measured had a low non-carcinogenic risk for both adults and children, malathion and trifluralin posed a high carcinogenic risk for adults.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Herbicidas , Inseticidas , Poluentes Químicos da Água , Purificação da Água , Poços de Água , Poluentes Químicos da Água/análise , Herbicidas/análise , Medição de Risco , Inseticidas/análise , Água Subterrânea/química , Água Subterrânea/análise , Água Potável/análise , Água Potável/química , Humanos , Irã (Geográfico)
3.
PLoS One ; 19(6): e0302442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935674

RESUMO

The groundwater resources in different areas of Pakistan are heading towards depletion along with the deterioration of quality due to over-abstraction and urbanization. The main focus of this study is to map the current hydrostratigraphical and hydraulic conditions of the late Quaternary aquifers in the central part of Thal Doab of Punjab Plains. To achieve the target, a comprehensive approach was employed combining geophysical investigations using electrical resistivity surveys (ERS) and physiochemical analysis of groundwater specimens collected from the study area. Careful calibration of resistivity models was performed by comparing them with lithologs to ensure their accuracy. The current groundwater conditions were assessed through thirty vertical electrical soundings (VES) using the Schlumberger electrode configuration up to 300m of AB/2. The interpreted results revealed the presence of four to six geo-electric sublayers comprising the intermixing layers of clay, silt, sand, gravel, and kankar inclusions. These layers exhibited very low (<20 Ω-m) to very high (>230 Ω-m) resistivity zones at various depth intervals. The developed 2D/3D models of aquifer systems identify the promising areas of good/fresh quality groundwater in the regions characterized by medium to very high resistivity mainly within the sand with gravel layers. However, lower resistivity values indicate the presence of marginally suitable/fair and saline/brackish groundwater showing the existence of fine sediments such as clays/silts. Additionally, twenty groundwater samples were collected to assess various parameters including pH, TDS, arsenic, fluoride, iron, nitrate, and nitrite. The spatial distribution of these parameters was visualized using 2D maps. The suitability of the groundwater for drinking consumption was evaluated in accordance with WHO guidelines.


Assuntos
Água Subterrânea , Água Subterrânea/análise , Água Subterrânea/química , Paquistão , Monitoramento Ambiental/métodos , Qualidade da Água , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 58(25): 11175-11184, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857431

RESUMO

Arsenic (As)-bearing Fe(III) precipitate groundwater treatment sludge has traditionally been viewed by the water sector as a disposal issue rather than a resource opportunity, partly due to assumptions of the low value of As. However, As has now been classified as a Critical Raw Material (CRM) in many regions, providing new incentives to recover As and other useful components of the sludge, such as phosphate (P) and the reactive hydrous ferric oxide (HFO) sorbent. Here, we investigate alkali extraction to separate As from a variety of field and synthetic As-bearing HFO sludges, which is a critical first step to enable sludge upcycling. We found that As extraction was most effective using NaOH, with the As extraction efficiency increasing up to >99% with increasing NaOH concentrations (0.01, 0.1, and 1 M). Extraction with Na2CO3 and Ca(OH)2 was ineffective (<5%). Extraction time (hour, day, week) played a secondary role in As release but tended to be important at lower NaOH concentrations. Little difference in As extraction efficiency was observed for several key variables, including sludge aging time (50 days) and cosorbed oxyanions (e.g., Si, P). However, the presence of ∼10 mass% calcite decreased As release from field and synthetic sludges considerably (<70% As extracted). Concomitant with As release, alkali extraction promoted crystallization of poorly ordered HFO and decreased particle specific surface area, with structural modifications increasing with NaOH concentration and extraction time. Taken together, these results provide essential information to inform and optimize the design of resource recovery methods for As-bearing treatment sludge.


Assuntos
Álcalis , Arsênio , Água Subterrânea , Esgotos , Esgotos/química , Água Subterrânea/química , Álcalis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos Férricos/química
5.
J Hazard Mater ; 475: 134939, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889466

RESUMO

Dense non-aqueous-phase liquids (DNAPLs) represent one of the most hazardous contaminants of groundwater, posing health risks to humans. Radon is generally used to trace DNAPLs; however, external factors, such as rainfall or stream water, can influence its efficacy. To overcome these limitations, this study pioneered the integration of radon and microbial community structures to explore DNAPL tracing and natural attenuation in the context of seasonal variations for human health risk assessments. The results showed that a radon tracer can estimate DNAPL saturation in the source zone, especially during the dry season when radon deficiency predominates. However, samples exhibited mixing effects during the wet season because of local precipitation. Moreover, bioremediation and low health risks were observed in the plume boundary zone, indicating that microbial dechlorination was a predominant factor determining these risks. The abnormal patterns of radon observed during the wet season can be elucidated by examining microbiological communities. Consequently, a combined approach employing radon and microbial analysis is advocated for the boundary zone, albeit with a less intensive management strategy, compared with that for the source zone. This novel coupling method offers a theoretical and practical foundation for managing DNAPL-contaminated groundwater.


Assuntos
Água Subterrânea , Radônio , Estações do Ano , Poluentes Radioativos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Radônio/análise , Medição de Risco , Poluentes Radioativos da Água/análise , Microbiologia da Água , Humanos , Biodegradação Ambiental
6.
Environ Geochem Health ; 46(7): 237, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849684

RESUMO

This study presents the first data on REY (Rare Earth Elements plus Yttrium) in the aquifer of Mount Etna (Sicily, Italy). Patterns normalized to chondrites indicate strong water-rock interaction, facilitated by a slightly acidic pH resulting from the dissolution of magma-derived CO2. REY patterns provide insights into the processes of both mineral dissolution and the formation of secondary phases. The relative abundance of light to heavy rare earth elements is compatible with the prevailing dissolution of ferromagnesian minerals (e.g., olivine or clinopyroxenes), reinforced by its strong correlation with other proxies of mineral dissolution (e.g., Mg contents). Pronounced negative Ce anomalies and positive Y anomalies demonstrate an oxidizing environment with continuous formation of secondary iron and/or manganese oxides and hydroxides. The Y/Ho fractionation is strongly influenced by metal complexation with bicarbonate complexes, a common process in C-rich waters. In the studied system, the measured REY contents are always below the limits proposed by Sneller et al. (2000, RIVM report, Issue 601,501, p. 66) for surface water and ensure a very low daily intake from drinking water.


Assuntos
Água Subterrânea , Metais Terras Raras , Metais Terras Raras/análise , Metais Terras Raras/química , Água Subterrânea/química , Sicília , Monitoramento Ambiental , Erupções Vulcânicas , Ítrio/química , Poluentes Químicos da Água/análise
7.
Environ Geochem Health ; 46(7): 227, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849675

RESUMO

Leakage accidents of buried pipelines have become increasingly common due to the prolonged service of some pipelines which have been in use for more than 150 years. Therefore, there is an urgent need for accurate prediction of pollution scope to aid in the development of emergency remediation strategies. This study investigated the distribution of a light non-aqueous phase liquid in soils containing gas and water through numerical simulations and laboratory experiments. Firstly, a three-dimensional porous medium model was established using ANSYS FLUENT, and for the first time, the distribution of gas and groundwater in soil environments was simulated in the model. Subsequently, the distribution of the three phases of diesel, gas, and water in soil was studied with different leakage velocities and it was found that the leakage velocity played a significant role in the distribution. The areas of diesel in soils at 60 min were 0.112 m2, 0.194 m2, 0.217 m2, and 0.252 m2, with corresponding volumes of 0.028 m3, 0.070 m3, 0.086 m3, and 0.106 m3, respectively, for leakage velocities of 1.3 m/s, 3.4 m/s, 4.6 m/s, and 4.9 m/s. Calculation formulas for distribution areas and volumes were also developed to aid in future prevention and control strategies under different leakage velocities. The study also compared the distribution areas and volumes of diesel in soils with and without groundwater, and it was found that distribution scopes were larger in soils containing groundwater due to capillary force. In order to validate the accuracy of the numerical simulation, laboratory experiments were conducted to study the diffusion of oil, gas, and water under different leakage velocities. The results showed good agreement between the experiments and the simulations. The research findings are of great significance for preventing soil pollution and provide a theoretical basis for developing scientifically sound soil remediation strategies.


Assuntos
Água Subterrânea , Poluentes do Solo , Solo , Água Subterrânea/química , Poluentes do Solo/análise , Solo/química , Simulação por Computador , Poluentes Químicos da Água/análise , Modelos Teóricos , Gases , Porosidade
8.
J Environ Radioact ; 277: 107451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851005

RESUMO

Strontium-90 (90Sr) is a major contaminant at nuclear legacy sites. The mobility of 90Sr is primarily governed by sorption reactions with sediments controlled by high surface area phases such as clay and iron oxides. Sr2+ adsorption was investigated in heterogeneous unconsolidated aquifer sediments, analogous to those underlying the UK Sellafield nuclear site, with grainsizes ranging from gravels to clays. Batch sorption tests showed that a linear Kd adsorption model was applicable to all grainsize fractions up to equilibrium [Sr] of 0.28 mmol L-1. Sr2+ sorption values (Kd; Langmuir qmax) correlated well with bulk sediment properties such as cation exchange capacity and surface area. Electron microscopy showed that heterogeneous sediments contained porous sandstone clasts with clay minerals (i.e. chlorite) providing an additional adsorption capacity. Therefore, gravel corrections that assumed that the > 2 mm fractions are inert were not appropriate and underestimated Kd(bulk) adsorption coefficients. However, Kd (<2 mm) values measured from sieved sediment fractions, were effectively adjusted to within error of Kd (bulk) using a surface area dependant gravel correction based on particle size distribution data. Amphoteric pH dependent Sr2+ sorption behaviour observed in batch experiments was consistent with cation exchange modelling between pH 2-7 derived from the measured cation exchange capacities. Above pH 7 model fits were improved by invoking a coupled cation exchange/surface complexation which allowed for addition sorption to iron oxide phases. The overall trends in Sr2+ sorption (at pH 6.5-7) produced by increasing solution ionic strength was also reproduced in cation exchange models. Overall, the results showed that Sr2+ sorption to heterogeneous sediment units could be estimated from Kd (<2 mm) data using appropriate gravel corrections, and effectively modelled using coupled cation exchange and surface complexation processes.


Assuntos
Sedimentos Geológicos , Água Subterrânea , Radioisótopos de Estrôncio , Estrôncio , Poluentes Radioativos da Água , Sedimentos Geológicos/química , Água Subterrânea/química , Adsorção , Estrôncio/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/química , Radioisótopos de Estrôncio/química , Radioisótopos de Estrôncio/análise , Tamanho da Partícula , Modelos Químicos
9.
Environ Sci Pollut Res Int ; 31(28): 40995-41012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837029

RESUMO

Groundwater quality in Wadi Fatimah is evaluated and demarcated for agriculture utilities using comprehensive approaches namely, international standards, agricultural water quality (AWQ) indices, irrigation water quality index (IWQI), and trace metals. Groundwater samples were collected (n = 59) and analysed for EC, pH, major and minor ions and trace metals. According to FAO recommendations, 42% of samples (EC > 3000 µS/cm) are inappropriate for agricultural uses. AWQ indices including salinity hazard, Kelly's ratio and Na% show that 50%, 19% and 37% of samples, respectively, are unsuitable for agricultural uses. USSL classification reveals that groundwater is preferable only for high-permeability soils and salt-tolerant crops. IWQI suggests that 88% of samples are moderately usable for agriculture. The interrelationship between water salinity and crop yield justified that 73%, 59%, 51% and 25% of samples are desirable to yield 90% in date palm trees, sorghum, rice and citrus fruits, respectively. Groundwater is appropriate for date palm trees except in downstream regions. Boron concentration suggests that 52%, 81% and 92% of samples are suitable for sensitive, semi-tolerant and tolerant crops, respectively. Groundwater in the central part (suitable for sensitive crops), central and upstream regions (semi-tolerant crops) and all regions except downstream (tolerant crops) are suitable for cultivation. Trace metals contents illustrate that 36%, 34%, 22%, 8%, 5% and 100% of samples are inappropriate for agriculture due to high concentrations of Cr, Cu, Ni, V, Mn and Mo, respectively in the groundwater. Further, AWQ indices, IWQI, USSL classifications and trace metals ensure that groundwater in the downstream, and a few pockets in the upstream are unfit for agricultural uses. This study recommends that groundwater in this basin is more suitable for tolerant crops (ie. date palm, sorghum) followed by semi-tolerant and sensitive crops.


Assuntos
Agricultura , Boro , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Arábia Saudita , Poluentes Químicos da Água/análise , Boro/análise , Metais/análise , Oligoelementos/análise
10.
Sci Total Environ ; 943: 173732, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851348

RESUMO

BACKGROUND AND OBJECTIVES: Groundwater contamination poses a significant health challenge in India, particularly impacting children. Despite its importance, limited research has explored the nexus between groundwater quality and child nutrition outcomes. This study addresses this gap, examining the association between groundwater quality and child undernutrition, offering pertinent insights for policymakers. DATA AND METHODS: The study uses data from the fifth round of the National Family Health Survey (NFHS) and the Central Groundwater Board (CGWB) to analyze the association between groundwater quality and child nutritional status. The groundwater quality data were collected by nationwide monitoring stations programmed by CGWB, and the child undernutrition data were obtained from the NFHS-5, 2019-21. The analysis included descriptive and logistic regression model. The study also considers various demographic and socio-economic factors as potential moderators of the relationship between groundwater quality and child undernutrition. FINDINGS: Significant variation in groundwater quality was observed across India, with numerous regions displaying poor performance. Approximately 26.53 % of geographical areas were deemed unfit for consuming groundwater. Environmental factors such as high temperatures, low precipitation, and arid, alluvial, laterite-type soils are linked to poorer groundwater quality. Unfit-for-consumption groundwater quality increased the odds of undernutrition, revealing a 35 %, 38 %, and 11 % higher likelihood of stunting, underweight, and wasting in children, with higher pH, Magnesium, Sulphate, Nitrate, Total Dissolved Solids, and Arsenic, levels associated with increased odds of stunting, underweight, and wasting. Higher temperatures (>25 °C), high elevations (>1000 m), and proximity to cultivated or industrial areas all contribute to heightened risks of child undernutrition. Children consuming groundwater, lacking access to improved toilets, or living in rural areas are more likely to be undernourished, while females, higher-income households, and those consuming dairy, vegetables, and fruits daily exhibit lower odds of undernutrition. POLICY IMPLICATIONS: Policy implications highlight the urgent need for investment in piped water supply systems. Additionally, focused efforts are required to monitor and improve groundwater quality in regions with poor water quality. Policies should emphasize safe sanitation practices and enhance public awareness about the critical role of safe drinking water in improving child health.


Assuntos
Água Subterrânea , Qualidade da Água , Monitoramento Ambiental , Água Subterrânea/química , Índia/epidemiologia , Desnutrição/epidemiologia , Poluição da Água/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Concentração de Íons de Hidrogênio , Política Ambiental , Política de Saúde , Arsênio/análise , Humanos , Criança , Sulfatos/análise , Magnésio , Cloretos
11.
Environ Monit Assess ; 196(7): 641, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904844

RESUMO

The lack of quality water resources for irrigation is one of the main threats for sustainable farming. This pioneering study focused on finding the best area for farming by looking at irrigation water quality and analyzing its location using a fuzzy logic model on a Geographic Information System platform. In the tribal-prone areas of Khagrachhari Sadar Upazila, Bangladesh, 28 surface water and 39 groundwater samples were taken from shallow tube wells, rivers, canals, ponds, lakes, and waterfalls. The samples were then analyzed for irrigation water quality parameters like electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium bicarbonate (RSBC), magnesium hazard ratio (MHR), Kelley's ratio (KR), and permeability index (PI). Fuzzy Irrigation Water Quality Index (FIWQI) was employed to determine the irrigation suitability of water resources. Spatial maps for parameters like EC, KR, MH, Na%, PI, SAR, and RSBC were developed using fuzzy membership values for groundwater and surface water. The FIWQI results indicate that 100% of the groundwater and 75% of the surface water samples range in the categories of excellent to good for irrigation uses. A new irrigation suitability map constructed by overlaying all parameters showed that surface water (75%) and some groundwater (100%) in the northern and southwestern portions are fit for agriculture. The western and central parts are unfit for irrigation due to higher bicarbonate and magnesium contents. The Piper and Gibbs diagram also indicated that the water in the study area is magnesium-bicarbonate type and the primary mechanism of water chemistry is controlled by the weathering of rocks, respectively. This research pinpoints the irrigation spatial pattern for regional water resource practices, identifies novel suitable areas, and improves sustainable agricultural uses in tribal-prone areas.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Lógica Fuzzy , Água Subterrânea , Recursos Hídricos , Bangladesh , Irrigação Agrícola/métodos , Água Subterrânea/química , Análise Espacial , Qualidade da Água , Poluentes Químicos da Água/análise
12.
Environ Monit Assess ; 196(7): 643, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904869

RESUMO

Urban water systems are potential sources of secondary microplastics (MPs) as well as a distributor of MPs in the environment. In the present study, the presence of MPs in the urban water systems of the Tehran Metropolitan (Capital of Iran) was investigated. In addition, the probable relationship of MPs with different land uses (i.e., residential-commercial, forest, military, and highway) was assessed. The results showed that all parts of Tehran's urban water system in the study area were contaminated with MPs (107.1 ± 39, 37.8 ± 10.5, 48.3 ± 3.1, 46.9 ± 5.6, 59.4 ± 26.5, 1.7, 2.0 ± 0.6, 7.9 ± 1, 1.8 ± 0.2 particles/liter at the residential, integrated, military, forest, highway runoffs, drinking water, groundwater, seasonal river, and the effluent of the wastewater treatment plants; respectively). However, significant differences were found between different land uses. As expected, the residential runoff had the highest rate of MPs pollution, with 107.1 ± 39 particles/liter. According to the obtained results and our estimation, more than five million MPs/day can enter into the water bodies and soil of the study area through the wastewater treatment plants. While there are significant differences in MPs in the different land uses, our findings suggest that residential areas and highways need further attention in controlling the spread of MPs in urban areas.


Assuntos
Cidades , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Irã (Geográfico) , Poluentes Químicos da Água/análise , Microplásticos/análise , Água Subterrânea/química , Rios/química , Poluição Química da Água/estatística & dados numéricos
13.
Ying Yong Sheng Tai Xue Bao ; 35(4): 970-984, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884232

RESUMO

Nitrate pollution in groundwater has become a global concern. One of the most important issues in controlling the nitrate pollution of groundwater is to identify the pollution source quickly and accurately. In this review, we firstly summarized the isotopic background values of potential sources of nitrate pollution in groundwater in 17 provinces (cities, autonomous regions) and 29 study areas in China, which could provide the fundamental database for subsequent research. Secondly, we reviewed the research progress of nitrate isotopes combined with multiple tracers for tracing nitrate in groundwater, and discussed their applicable conditions, advantages, and disadvantages. We found that halides and microorganisms combined with nitrate isotopes could accurately trace the pollution sources of domestic sewage, excrement and agricultural activities. The combination of Δ17O and nitrate isotopes could effectively distinguish the source of atmospheric deposition of nitrate in groundwater. The combination of groundwater age and nitrate isotopes could further determine the time scale of nitrate pollution. In addition, we summarized the application cases and compared the characteristics of mass balance mixing model, IsoSource model, Bayesian isotope mixing model, and EMMTE model for quantitative identification of nitrate pollution in groundwater. For the complexity and concealment of groundwater pollution sources, the coupling of nitrate isotopes with other chemical and biological tracing methods, as well as the application of nitrate isotope quantitative models, are effective tools for reliably identifying groundwater nitrate sources and transformation processes.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Água Subterrânea/análise , Água Subterrânea/química , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China , Isótopos de Oxigênio/análise , Isótopos/análise
14.
Environ Sci Technol ; 58(24): 10752-10763, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848107

RESUMO

Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.


Assuntos
Polímeros , Sulfetos , Sulfetos/química , Polímeros/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Carbono/química , Propano/análogos & derivados
15.
J Hazard Mater ; 474: 134798, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843633

RESUMO

The application of Monitored Natural Attenuation (MNA) technology has been widespread, while there is a paucity of data on groundwater with multiple co-contaminants. This study focused on high permeability, low hydraulic gradient groundwater with co-contamination of benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorinated aliphatic hydrocarbons (CAHs), and chlorinated aromatic hydrocarbons (CPs). The objective was to investigate the responses of microbial communities during natural attenuation processes. Results revealed greater horizontal variation in groundwater microbial community composition compared to vertical variation. The variation was strongly correlated with the total contaminant quantity (r = 0.722, p < 0.001) rather than individual contaminants. BTEX exerted a more significant influence on community diversity than other contaminants. The assembly of groundwater microbial communities was primarily governed by deterministic processes (ßNTI < -2) in high contaminant concentration zones, while stochastic processes (|ßNTI| < 2) dominated in low-concentration zones. Moreover, the microbial interactions shifted at different depths indicating the degradation rate variation in the vertical. This study makes fundamental contribution to the understanding for the effects of groundwater flow and material fields on indigenous microbial communities, which will provide a scientific basis for more precise adoption of microbial stimulation/augmentation to accelerate the rate of contaminant removal.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Poluentes Químicos da Água/análise , Solventes/química , Microbiota , Bactérias/classificação , Bactérias/metabolismo , Hidrocarbonetos Clorados/análise , Derivados de Benzeno/análise , Microbiologia da Água , RNA Ribossômico 16S/genética
16.
Sci Total Environ ; 944: 173653, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851344

RESUMO

Managed aquifer recharge (MAR) is a promising technique for enhancing groundwater resources and addressing water scarcity. Particularly, this research highlights the novelty and urgent need for MAR facilities in the Chungcheongnam-do region of South Korea as a solution to augment groundwater resources and combat water scarcity. This research encompasses a comprehensive assessment, ranging from laboratory-scale column experiments to pilot-scale tests, focusing on dissolved organic matter (DOM) characterization, natural organic matter (NOM) removal, and water quality improvement, including biological stability. In the laboratory, DOM characteristics of source water and recharged groundwater were analyzed using advanced dissolved organic characteristic tools, and their potential impacts on water quality, as well as per- and polyfluoroalkyl substances (PFASs) were assessed. DOM, total cell counts, and several PFASs with molecular weights >450 Da (particularly long-chain PFASs showing >99.9 % reduction) were effectively reduced in a laboratory-scale experiment. A laboratory-scale column study revealed that most selected PFASs were not effectively removed. Moving to the pilot-scale, a series of experiments were conducted to assess NOM removal during soil passage. Similar to the results of the laboratory-scale experiment, MAR demonstrated significant potential for reducing NOM concentrations, thus improving water quality. Regarding biological stability, assimilable organic carbon in production well (i.e., final produced water by MAR process) was lower than both two sources of surface water (e.g., SW1 and SW2). This suggests that water derived from PW (i.e., production well) exhibited biological stability, undergoing effective biodegradation by aerobic bacteria during soil passage. The findings from this study highlight the critical importance of implementing MAR techniques in regions facing water scarcity, emphasizing its potential to significantly enhance future water security initiatives.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , República da Coreia , Projetos Piloto , Fluorocarbonos/análise , Qualidade da Água , Purificação da Água/métodos
17.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859757

RESUMO

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Assuntos
Ferro , Ferro/química , Poluentes Químicos da Água/química , Halogenação , Água Subterrânea/química
18.
Sci Total Environ ; 944: 173889, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876335

RESUMO

The transport and retention of bacteria in porous media, such as aquifer, are governed by the solid-liquid interface characteristics and bacterial mobility. The secretion of extracellular polymeric substance (EPS) by bacteria modifies their surface property, and thereby has effects on their adhesion to surface. The role of EPS in bacterial mobility within saturated quartz sand media is uncertain, as both promoting and inhibitory effects have been reported, and underlying mechanisms remain unclear. In this study, the effects of EPS on bacterial transport behavior and possible underlying mechanism were investigated at 4 concentrations (0 mg L-1, 50 mg L-1, 200 mg L-1 and 1000 mg L-1) using laboratory simulation experiments in conjunction with Extend Derjaguin-Landau-Verweu-Overbeek (XDLVO) modeling. The results showed that EPS facilitated bacterial mobility at all tested concentrations. It could be partially explained by the increased energy barrier between bacterial cells and quartz sand surface in the presence of EPS. The XDLVO sphere-plate model predicted that EPS induced a higher electrostatic double layer (EDL) repulsive force, Lewis acid-base (AB) and steric stabilization (ST), as well as a lower Lifshitz-van der Waals (LW) attractive force. However, at the highest EPS concentration (1000 mg L-1), the promotion of EPS on bacterial mobility weakened as a result of lower repulsive interactions between cells, which was supported by observed enhanced bacterial aggregation. Consequently, the increased aggregation led to greater bio-colloidal straining and ripening in the sand column, weakening the positive impact of EPS on bacterial transport. These findings suggested that EPS exhibited concentration-dependent effects on bacterial surface properties and transport behavior and revealed non-intuitive dual effects of EPS on those processes.


Assuntos
Bactérias , Matriz Extracelular de Substâncias Poliméricas , Porosidade , Bactérias/metabolismo , Propriedades de Superfície , Água Subterrânea/química , Aderência Bacteriana
19.
Sci Total Environ ; 944: 173983, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876341

RESUMO

Integrated health risk assessment strategies for emerging organic pollutants and heavy metals that coexist in water/soil media are lacking. Contents of perfluoroalkyl compounds and potentially toxic elements in multiple media were determined by investigating a county where a landfill and a tungsten mine coexist. The spatial characteristics and sources of contaminants were predicted by Geostatistics-based and multivariate statistical analysis, and their comprehensive health risks were assessed. The average contents of perfluorooctane acid, perfluorooctanesulfonic acid, arsenic, and cadmium in groundwater were 3.21, 0.77, 1.69, and 0.14 µg L-1, respectively; the maximum content of cadmium in soils and rice highly reached 2.12 and 1.52 mg kg-1, respectively. In soils, the contribution of mine lag to cadmium was 99 %, and fertilizer and pesticide to arsenic was 59.4 %. While in groundwater, arsenic, cadmium and perfluoroalkyl compounds near the landfill mainly came from leachate leakage. Significant correlations were found between arsenic in groundwater and arsenic and cadmium in soils, as well as perfluoroalkyl compounds in groundwater and pH and sulfate. Based on these correlations, the geographically optimal similarity model predicted high-level arsenic in groundwater near the tungsten mine and cadmium/perfluoroalkyl compounds around the landfill. The combination of analytic network process, entropy weighting method and game theory-based trade-off method with risk assessment model can assess the comprehensive risks of multiple pollutants. Using this approach, a high health-risk zone located around the landfill, which was mainly attributed to the presence of arsenic, cadmium and perfluorooctanesulfonic acid, was found. Overall, perfluoroalkyl compounds in groundwater altered the spatial pattern of health risks in an arsenic­cadmium contaminated area.


Assuntos
Arsênio , Cádmio , Monitoramento Ambiental , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Arsênio/análise , Cádmio/análise , Medição de Risco , Poluentes do Solo/análise , Ácidos Alcanossulfônicos/análise , Mineração , China
20.
J Environ Manage ; 362: 121269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823303

RESUMO

Monitoring and assessing groundwater quality and quantity lays the basis for sustainable management. Therefore, this research aims to investigate various factors that affect groundwater quality, emphasizing its distance to the primary source of recharge, the Nile River. To this end, two separate study areas have been considered, including the West and West-West of Minia, Egypt, located around 30 and 80 km from the Nile River. The chosen areas rely on the same aquifer as groundwater source (Eocene aquifer). Groundwater quality has been assessed in the two studied regions to investigate the difference in quality parameters due to the river's distance. The power of machine learning to associate different variables and generate beneficial relationships has been utilized to mitigate the cost consumed in chemical analysis and alleviate the calculation complexity. Two adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the water quality index (WQI) and the irrigation water quality index (IWQI) using EC and the distance to the river. The findings of the assessment of groundwater quality revealed that the groundwater in the west of Minia exhibits suitability for agricultural utilization and partially meets the criteria for potable drinking water. Conversely, the findings strongly recommend the implementation of treatment processes for groundwater sourced from the West-West of Minia before its usage for various purposes. These outcomes underscore the significant influence of surface water recharge on the overall quality of groundwater. Also, the results revealed the uncertainty of using sodium adsorption ratio (SAR), Sodium Percentage (Na%), and Permeability Index (PI) techniques in assessing groundwater for irrigation and recommended using IWQI. The developed ANFIS models depicted perfect accuracy during the training and validation stages, reporting a coefficient of correlation (R) equal to 0.97 and 0.99 in the case of WQI and 0.96 and 0.98 in the case of IWQI. The research findings could incentivize decision-makers to monitor, manage, and sustain groundwater.


Assuntos
Água Subterrânea , Qualidade da Água , Água Subterrânea/química , Egito , Rios/química , Monitoramento Ambiental , Lógica Fuzzy , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...